Math, asked by jaikumarpno1, 8 months ago

By melting a metallic solid sphere with radius 9 cm , some cones are recasted . If the radius and height of cones recasted are 3 cm and 6 cm respectively , then find the number of cones recasted .​

Answers

Answered by shorya5744
1

Answer:

bro just find the volume of each cone and divide the volume of sphere by it

you'll get ur answer...

Answered by Yugant1913
7

\huge\sf\mathbb\color{white} \underline{\colorbox{black}{☯SoLuTiOn☯}}

Step-by-step explanation:

Radii  \: of  \: three  \: iron \:  balls  \: are  \: given \:   r_{1} = 6cm \: , r_{3} = 8cm,  r_{3} = 10cm

∴  \: Volume \: of \: first \: ball \:   V_{1} =  \frac{4}{3} \pi \:  {r_{1}}^{3}  =  \frac{4}{3} \pi. {6}^{3}  \\

Volume \: of \: second \: ball \:  V_{2} =  \frac{4}{3}  {\pi \:  r_{2} }^{3}  =  \frac{4}{3} \pi. {8}^{3}  \\

Volume \: of \: third \: ball \:  V_{3}  =  \frac{4}{3} \pi \:  { r_{3} }^{3}  =  \frac{4}{3} \pi. {(10)}^{3}  \\

If  \: the \:  radius  \: of \:  a \:  new  \: sphere  \: made  \: is  \:  r and  \: volume \:  V,  \: then \:  V =  \frac{4}{3} \pi {r}^{3}  \\ </p><p>

Since,  \: sphere \:   is  \: made  \: by  \: melting  \: the \:  three \:  balls.

Hence, \:  Volume \:  of \:  sphere =  \: Sun \:  of \:  the  \: volume  \: of \:  the \:  balls \\

⇒ \:  \frac{4}{3} \pi {r}^{3}  =  \frac{4}{3} \pi. {6}^{3}  +  \frac{4}{3} \pi {8}^{3}  +  \frac{4}{3} \pi {(10)}^{3}  \\

⇒ \:  \:  {r}^{3}  =  {6}^{3}  +  {8}^{3}  +  {10}^{3}  \\  = 216 + 512 + 1000 = 1728

∴ \:  \:  \:  \: r \sqrt[3]{1728}  = 12cm

So, \:  Radius \:  of  \: new  \: sphere \:  is \:  12 cm.  \\

Similar questions