Math, asked by vriddhi93, 7 months ago

By melting down a sphere of radius 10.5 CM some small cones are made each of height 3 cm and radius 3.5 cm find the number of such cones​

Answers

Answered by Anonymous
32

Given \: that

Metallic  \: sphere \:  of \:  radius  = 10.5cm

Cone  \: radius = 3.5cm

Let  \: the \:  number \:  of \:  cones \:  be \:  X

V  = x \times V \: cone

 \frac{4}{3} \pi \: r  {}^{3}  = x \times  \frac{1}{3} πr  {}^{2} h

 \frac{4 \times 10.5 \times 10.5 \times 10.5}{3.5 \times 3.5 \times 3}  = x

x  = 126

∴Number \:  of  \: cones = 126

Answered by Yugant1913
15

Answer:

⟾ 126.

Step-by-step explanation:

Radius of sphere r = 10.5 cm

Radius of cone r = 3.5 cm

Height of cone r = 3 cm

∴ \:  \:  \: volume \: of \: sphere \:  =  \frac{4}{3} \pi \:  {r}^{3}

⇉ \frac{4}{3} \pi(10.5 {)}^{3}

volume \: of \: cone \:  =  \frac{1}{ 3} \pi \:  {r}^{3} h

⇉ \frac{1}{3} \pi(3.5 {)}^{2}  \times 3

⇉  \pi \times (3.5 {)}^{2}

Let n cones are made by melting the sphere.

Then,Volume of n cones = Volume of sphere

➠n \times \pi.(3.5 {)}^{2}  =  \frac{4}{3} \pi(10.5 {)}^{3}

➠ \:  \: n =  \frac{ \frac{4}{3} \times (10.5 {)}^{3}  }{(3.5 {)}^{2} }

 \:  \:  \:  \:  \:  =  \frac{4 \times 10.5 \times 10.5 \times 10.5}{3 \times 3.5 \times 3.5}

 \:  \:  \:  =  \frac{4 \times 3.5 \times 10.5 \times 10.5}{3.5 \times 3.5}

 \:  \:  \:  \:  =   \frac{4 \times 1.5 \times 10.5}{0.5}

 \:  \:  \:  \:  \:  = 4 \times 3 \times 10.5

 \:  \:  \:  \:  = 126.

Similar questions