Math, asked by sreeyapradhan, 3 months ago

By melting two solid spheres of 1cm and 6cm a hollow spheres of 1cm thick is formed. Find the area of outer curve surface of new sphere.​

Answers

Answered by Anonymous
125

Given :

By melting two solid spheres of 1cm and 6cm a hollow spheres of 1cm thick is formed.

To find :

  • Find the area of outer curve surface of new sphere.

Solution :

We need to remember some points before solving such problems or questions

Recasting, melting, reformed & transformation, if these words are in any questions, then it means we have to find out volume of given dimension.

Volume of sphere → 4/3 πr³

  • According to the given condition

★ Thickness of hollow sphere after melting = 1cm

★ Radius of the first sphere (x) = 1cm

★ Radius of the second sphere (y) = 6cm

Consider internal radius be x

★ Internal radius (r) = x

★ External radius (R)

→ internal radius + thickness = x + 1

Volume of two sphere = Volume of hollow sphere

→ 4/3 π r³ + 4/3 πr³ = 4/3πR³ - 4/3πr³

→ 4/3πx³ + 4/3πy³ = 4/3π(R³ - r³)

→ 4/3π(x³ + y³) = 4/3π(R³ - r³)

→ 4/3π(x³ + y³) = 4/3π{(x + 1)³ - x³}

  • Cancel 4/3π & apply identity
  • (a + b)³ = a³ + b³ + 3ab(a + b)

→ (6)³ + 1 = {x³ + 1 + 3*x*1(x + 1)} - x³

→ 216 + 1 = {x³ + 1 + 3x(x + 1)} - x³

→ 216 + 1 = x³ + 1 + 3x² + 3x - x³

→ 216 = 3x² + 3x + 1 - 1 + x³ - x

→ 216 = 3x² + 3x

→ 3x² + 3x - 216 = 0

  • Take 3 as a common

→ 3(x² + x - 72) = 0

→ x² + x - 72 = 0

  • Splitting middle term

→ x² + 9x - 8x - 72 = 0

→ x(x + 9) - 8(x + 9) = 0

→ (x + 9)(x - 8) = 0

•°• x = -9 or x = 8

Length never be in negative

→ Take radius = 8cm = x = Internal radius

→ External radius = x + 1 = 9cm

★ Outer curved surface area of new sphere

→ 4πR²

  • Put the value of external radius

→ 4π(9)²

→ 4π × 81

→ 4 × 22/7 × 81

→ 88 × 81/7

→ 1018.28cm²

•°• Outer curved surface area of new hollow sphere is 1018.28 cm²

━━━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyKilIer
107

{\bf{Given\::}} \\

  • Two solid metallic spheres of radii 1 cm and 6 cm, which were melting to formed a hollow sphere of thickness 1 cm.

 \\ {\bf{To\: Find\::}} \\

  • The area of outer curved surface area of new sphere.

 \\ {\bf{Solution\::}} \\

As we know that,

Volume of a metallic sphere is,

\orange\bigstar\:{\Large\mid}\:\bf\purple{Volume\:=\:\dfrac{4}{3}\:\pi\:r^3\:}\:{\Large\mid}\:\green\bigstar \\

Given that,

  • Radius of two solid metallic spheres is 1 cm and 6 cm.

Let,

  • r = 1 cm

  • R = 6 cm

Then,

Sum of volume of these two spheres are,

\dashrightarrow\:\tt{Volume\:=\:\dfrac{4}{3}\:\pi\:r^3\:+\:4\:\pi\:R^3\:} \\

\dashrightarrow\:\tt{Volume\:=\:\dfrac{4}{3}\:\pi\:(r^3\:+\:R^3)\:} \\

\dashrightarrow\:\tt{Volume\:=\:\dfrac{4}{3}\:\pi\:(1^3\:+\:6^3)\:} \\

\dashrightarrow\:\tt{Volume\:=\:\dfrac{4}{3}\:\pi\:(1\:+\:216)\:} \\

\dashrightarrow\:\bf{Volume\:=\:\dfrac{4}{3}\:\pi\times{(217)}\:} \\

Now,

Let,

  • Internal radius of the hollow sphere is x cm.

  • External radius of the hollow sphere is (x + 1) cm [due 1 cm thick].

Volume of the hollow sphere is,

\dashrightarrow\:\bf{Volume\:=\:\dfrac{4}{3}\:\pi\:\left((x\:+\:1)^3\:-\:x^3\right)\:} \\

According to the question,

  • Melting of two metallic spheres are formed a hollow sphere.

That means,

➣ Sum of volume of two metallic spheres is equal to the volume of hollow sphere.

:\implies\:\tt{\dfrac{4}{3}\:pi\times{(217)}\:=\:\dfrac{4}{3}\:\pi\:\left((x\:+\:1)^3\:-\:x^3\right)\:} \\

:\implies\:\tt{217\:=\:\left(x^3\:+\:1\:+\:3x(x\:+\:1)\right)\:-\:x^3\:} \\

:\implies\:\tt{217\:=\:x^3\:+\:1\:+\:3x(x\:+\:1)\:-\:x^3\:} \\

:\implies\:\tt{217\:=\:1\:+\:3x^2\:+\:3x\:} \\

:\implies\:\tt{3x^2\:+\:3x\:=\:217\:-\:1\:} \\

:\implies\:\tt{3x^2\:+\:3x\:=\:216\:} \\

:\implies\:\tt{3\:(x^2\:+\:x)\:=\:216\:} \\

:\implies\:\tt{x^2\:+\:x\:=\:\dfrac{216}{3}\:} \\

:\implies\:\tt{x^2\:+\:x\:=\:72\:} \\

:\implies\:\tt{x^2\:+\:x\:-\:72\:=\:0\:} \\

:\implies\:\tt{x^2\:+\:9x\:-\:8x\:-\:72\:=\:0\:} \\

:\implies\:\tt{x\:(x\:+\:9)\:-\:8\:(x\:+\:9)\:=\:0\:} \\

:\implies\:\tt{(x\:-\:8)\:(x\:+\:9)\:=\:0\:} \\

:\implies\:\tt{x\:-\:8\:=\:0\:~~~or~~~\:x\:+\:9\:=\:0\:} \\

:\implies\:\tt{x\:=\:8\:{\red{\checkmark}}~~~or~~~\:x\:=\:-9\:(impossible)} \\

:\implies\:\bf{x\:=\:8\:cm\:} \\

Hence,

  • Internal radius of hollow sphere is 8 cm.

  • External radius of hollow sphere is 9 cm.

As we know that,

➣ External curved surface area of a hollow sphere is,

\orange\bigstar\:{\Large\mid}\:\bf\blue{Volume\:=\:4\pi\:r^2\:}\:{\Large\mid}\:\green\bigstar \\

➠ 4 × π × 9²

➠ 4π × 81

➠ 324π

➠ 324 × \tt{\dfrac{22}{7}}

➠ 46.285 × 22

\bf\pink{1018.285 \:cm^2}

∴ The area of outer curved surface area of the hollow sphere is 1018.285 cm².

Similar questions