Math, asked by simplyrenz27, 4 days ago

By method of mathematical induction, prove that 4 + 10 + 18 …… + n(n+3) = n(n +1)(n+5) / 3

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

\rm \:P(n) : 4 + 10 + 18 +  \cdots \cdots \:  + n(n + 3) = \dfrac{n(n + 1)(n + 5)}{3}  \\

Step :- 1 For n = 1

\rm \:P(1) : 4  = \dfrac{1(1 + 1)(1 + 5)}{3}  \\

\rm \:P(1) : 4  = \dfrac{12}{3}  \\

\rm \:P(1) : 4  = 4  \\

\rm\implies \:P(n) \: is \: true \: for \: n = 1 \\

Step :- 2 Assume that P(n) is true for n = k, where k is some natural number.

\rm \:P(k) : 4 + 10 + 18 +  \cdots \cdots \:  + k(k + 3) = \dfrac{k(k + 1)(k + 5)}{3}  \\

Step :- 3 We have to prove that P(n) is true for n = k + 1.

\rm \:P(k + 1) : 4 + 10 + 18 +  \cdots  \:  + k(k + 3) + (k + 1)(k + 4) = \dfrac{(k + 1)(k + 2)(k + 6)}{3}  \\

Consider LHS

\rm \: 4 + 10 + 18 +  \cdots  \:  + k(k + 3) + (k + 1)(k + 4) =  \\

Now, Substitute the value from Step 2, we get

\rm \:  =  \:  \dfrac{k(k + 1)(k + 5)}{3} + (k + 1)(k + 4) \\

\rm \:  =  \:  \dfrac{k(k + 1)(k + 5) + 3(k + 1)(k + 4)}{3} \\

\rm \:  =  \:  \dfrac{(k + 1)[k(k + 5) + 3(k + 4)]}{3} \\

\rm \:  =  \:  \dfrac{(k + 1)[ {k}^{2}  + 5k + 3k + 12]}{3} \\

\rm \:  =  \:  \dfrac{(k + 1)[ {k}^{2}  + 8k + 12]}{3} \\

\rm \:  =  \:  \dfrac{(k + 1)[ {k}^{2}  + 2k + 6k + 12]}{3} \\

\rm \:  =  \:  \dfrac{(k + 1)[k(k + 2) + 6(k + 2)]}{3} \\

\rm \:  =  \dfrac{(k + 1)(k + 2)(k + 6)}{3}

\rm\implies \:P(n) \: is \: true \: for \: n = k + 1 \\

Hence, By the Process of Principal of Mathematical Induction,

\bf \:  4 + 10 + 18 +  \cdots \cdots \:  + n(n + 3) = \dfrac{n(n + 1)(n + 5)}{3}  \\

Similar questions