By paper cutting and pasting prove that If two lines intersect each other,
then the vertically opposite angles are equal. give diagram
Answers
Note
As per the problem we need to prove, \angle \mathrm{AOD}=\angle \mathrm{BOC} \text { and } \angle \mathrm{AOC}=\angle \mathrm{BOD}∠AOD=∠BOC and ∠AOC=∠BOD
Now on line AB,
\angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}∠AOD+∠BOD=180
∘
On line CD,
\angle \mathrm{BOC}+\angle \mathrm{BOD}=180^{\circ}∠BOC+∠BOD=180
∘
Hence, \angle \mathrm{AOD}+\angle \mathrm{BOD}=\angle \mathrm{BOC}+\angle \mathrm{BOD}∠AOD+∠BOD=∠BOC+∠BOD
\angle \mathrm{AOD}=\angle \mathrm{BOC}∠AOD=∠BOC --------------(Proved)
On line AB,
\angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}∠AOC+∠BOC=180
∘
On Line CD,
\angle \mathrm{BOC}+\angle \mathrm{BOD}=180^{\circ}∠BOC+∠BOD=180
∘
Hence, \angle \mathrm{AOC}+\angle \mathrm{BOC}=\angle \mathrm{BOC}+\angle \mathrm{BOD}∠AOC+∠BOC=∠BOC+∠BOD
\angle \mathrm{AOC}=\angle \mathrm{BOD}∠AOC=∠BOD …………(Proved)
Hence the statement 'if two lines intersect each other then vertically opposite angles are equal' is proved