Math, asked by ManpreetSinghfb, 10 months ago

By PMI , Prove that
1^2 + 2^2 + ... + n^2 >n^3÷3 n€N ​

Answers

Answered by Anonymous
1

</p><p>\huge{ \underline{ \boxed{ \mathfrak{ \red{question}}}}} \\  \\  {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ......... {n}^{2}  &gt;  \frac{ {n}^{3} }{3}

</p><p>\huge{ \underline{ \boxed{ \mathfrak{ \red{answer}}}}}

We have to prove that

1^2 + 2^2 + ... + n^2 >n^3÷3 n€N........(1)

put n=1

 {1}^{2}  &gt; ( \frac{1}{3})^{3} \\  \\ 1 &gt;  \frac{1}{3}  \\

which is true.

∴Result is true for n=k

∴ {1}^{2}  +  {2}^{2}  +  {3}^{2} +    .... + {k}^{2}  &gt;  \frac{ {k}^{3} }{3}  \\  \\∴ {1}^{2}  +  {2}^{2}  +  {3}^{2}  + .... +  {k}^{2}  + ( {k + 1})^{2}   &gt; \frac{ {k}^{3} }{3}  + ( {k + 1) }^{2}  \\  \\ =  &gt;  \frac{ {k}^{3}  + 3( {k + 1)}^{2} }{3}  =   \frac{ {k}^{3}  + 3 {k}^{2} + 6k + 3 }{3}  \\  \\  =  &gt;  \frac{ {k}^{3}  + 3 {k}^{2}  + 3k + 1 + 3(k + 2)}{3}  =  \frac{( {n + 1)}^{2} }{3}  + (k +  \frac{2}{3} ) \\  \\ ∴ {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ...... +  {k}^{2}  + ( {k + 1)}^{2}  &gt;  \frac{ ({k + 1)}^{3} }{3} </p><p>

Result is true for n= k+1

Hence by mathematical induction P(n)

is true for all n€N.

Similar questions