Math, asked by krudra059, 2 months ago

By remainder theorem find the remainder when P(x) is divided by g(x),where P(x)= x3 -x2-4x-1 g(x)=x+1​

Answers

Answered by Anonymous
13

Answer:

\tt{SOLUTION:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt{By \:  Remainder \:  Theorem}

\small\tt\purple{x+1 = 0}

 \boxed{\small\tt\purple{x =  - 1}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \tt{Now \:  substitute  \: the \:  value \:  of \:  x \:  in \:  p(x)  \: which \:  is  \: } \small \tt \purple{-1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \small\tt{ p(x)  \:  \:  \: = {x}^{3}  -  {x}^{2}  - 4x - 1}

 \small\tt{ p( - 1) = { - 1}^{3}  -  { (- 1)}^{2}  - 4( - 1) - 1}

 \small\tt{    \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = { - 1} { - 1}   +  4 - 1}

 \small\tt{    \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  - 2  +  4 - 1}

 \small\tt{    \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  2 - 1}

 \tt \purple{   Remainder  =  1}

Answered by madukasundi157
16

Answer:

Solution :-

By remainder theorem

x \:  +  \: 1 \:  =  \: 0.  \\  \\ x \:  =  \:  - 1.

Now subsitude the value of x in p(x) which is -1.

p(x) \:  =  \: x ^{3}  \:  -  \: x  \: ^{2} \:  -  \: 4x \:  - 1 \\ p( - 1) \:  =  - 1 ^{3}   \:  -   \: ( - 1) ^{2}  \:  -  \: 4( - 1) \:  - 1 \\  =  \:  -  \: 1 \:   - \: 1  \:  \ +  \: 4 \:  -  \: 1 \\  =  \:  -  \: 2 \:  \ +  \: 4 \:  -  \: 1 \\  =  \: 2 \:-\:1

Remainder = 1 .

Don't forget to thanks

Mark as brainlist.

Similar questions