Math, asked by jeetendrashah581, 9 months ago

by selling a pen for $ 289, a shopkeeper incurs a loss of 15% at what price should he sell it to earn a profit of 35%​

Answers

Answered by mddilshad11ab
146

\sf\large\underline{Given:}

\tt{\implies Selling\: price\:of\:pen=\$289}

\tt{\implies Loss\:on\: selling\:pen=15\%}

\sf\large\underline{To\: Find:}

\tt{\implies New\:selling\: price\:_{(pen)}=?}

\sf\large\underline{Solution:}

  • To calculate new selling price of the pen, at first we have find out the cost price of the pen]

\tt{\implies CP=\dfrac{100}{100-L\%}\times\:SP}

\tt{\implies CP=\dfrac{100}{100-15}\times\:289}

\tt{\implies CP=\dfrac{100}{85}\times\:289}

\tt{\implies CP=\dfrac{100}{5}\times\:17}

\tt{\implies CP=20\times\:17}

\tt{\implies CP=\$340}

  • Now calculate the new selling price of the pen]

\sf\large\underline{Now,\:we\:have:}

\tt{\implies Cost\: price\:of\:pen=\$340}

\tt{\implies profit\:on\: selling\:pen=35\%}

\tt{\implies New\:_{(sp)}=\dfrac{100+G\%}{100}\times\:CP}

\tt{\implies New\:_{(sp)}=\dfrac{100+35}{100}\times\:340}

\tt{\implies New\:_{(sp)}=\dfrac{135}{100}\times\:340}

\tt{\implies New\:_{(sp)}=\dfrac{135\times\:34}{10}}

\tt{\implies New\:_{(sp)}=\dfrac{4590}{10}}

\tt{\implies New\:_{(sp)}=\$459}

\sf\large{Hence,}

\bf{\implies New\:_{(selling\: price\:of\:pen)}=\$459}

\tt{\underbrace{Answer-(\$459)}}

Answered by my74219
15

Step-by-step explanation:

Thus the cost of pen when shopkeeper sell the pen in 35%profit=459

answer

If this question help you then please click on thank you button

Attachments:
Similar questions