Math, asked by gursimrank402, 1 month ago

by selling a wall clock at a loss of 20% , a shopkeeper incurs a loss of rupees 80 . find it's cost price and selling price .​

Answers

Answered by BabyBunny
2

Answer:

Loss percent of a wall clock : 20%

Loss rupees of a wall clock : ₹80

To find :

The cost price and the selling price of the wall clock.

Solution :

First, we'll find the value of the cost price.

Let the cost price of the wall clock be y.

Cost price of the wall clock :

\sf \dashrightarrow y - (20\% \: of \: y) = 80⇢y−(20%ofy)=80

\sf \dashrightarrow y - \bigg( \dfrac{20}{100} \: of \: y \bigg) = 80⇢y−(

100

20

ofy)=80

\sf \dashrightarrow y - \bigg( \dfrac{20}{100} \times y \bigg) = 80⇢y−(

100

20

×y)=80

\sf \dashrightarrow y - \bigg( \dfrac{1}{5} \times y \bigg) = 80⇢y−(

5

1

×y)=80

\sf \dashrightarrow y - \dfrac{y}{5} = 80⇢y−

5

y

=80

\sf \dashrightarrow \dfrac{5y - y}{5} = 80⇢

5

5y−y

=80

\sf \dashrightarrow \dfrac{4y}{5} = 80⇢

5

4y

=80

\sf \dashrightarrow 4y = 80 \times 5⇢4y=80×5

\sf \dashrightarrow 4y = 400⇢4y=400

\sf \dashrightarrow y = \dfrac{400}{4}⇢y=

4

400

\sf \dashrightarrow y = 100⇢y=100

Now, we can find the selling price of the clock.

Selling price of wall clock :

\sf \dashrightarrow \dfrac{(100 - Loss\%)}{100} \times CP⇢

100

(100−Loss%)

×CP

\sf \dashrightarrow \dfrac{(100 - 20)}{100} \times 100⇢

100

(100−20)

×100

\sf \dashrightarrow \dfrac{80}{100} \times 100⇢

100

80

×100

\sf \dashrightarrow \dfrac{4}{5} \times 100⇢

5

4

×100

\sf \dashrightarrow \dfrac{4 \times 100}{5} = \dfrac{400}{5}⇢

5

4×100

=

5

400

\sf \dashrightarrow \cancel \dfrac{400}{5} = 80⇢

5

400

=80

Hence, the cost price and the selling price of the wall clock is ₹100 and ₹80 respectively.

Similar questions