Math, asked by navaneethvyka, 9 months ago

by substitution method find
3x -5y=6
2x+3y=61​

Answers

Answered by Anonymous
2

Answer:

Your answer = y= 9, x= 17

Step-by-step explanation:

3x - 5y = 6

2x + 3y = 61

using substitution method;

3x= 6 + 5y

x = 6/3+5y/3______(a)

using (a);

2x+ 3y = 61

2*(6/3+5y/3) + 3y = 61

12+10y + 9y= 61*3

12+ 19y = 183

19y = 183-12

y= 171/19

y= 9____________(b)

using (b) in (a);

x= 6/3 + 5y/3

x= 2 + 5(9)/3

x= 2+ 45/3

x= 2+ 15

x= 17

MARK BRAINLIEST

Answered by Anonymous
9

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}}

3x - 5y = 6

2x + 3y = 61

\bf{\large{\underline{\bf{To\:find\::}}}}}

The value of x and y.

\bf{\large{\underline{\bf{Explanation\::}}}}}

We have;

  • 3x - 5y = 6...................(1)
  • 2x + 3y = 61................(2)

A/q

From equation (1),we get;

\longrightarrow\sf{3x-5y=6}\\\\\longrightarrow\sf{3x=6+5y}\\\\\longrightarrow\sf{x=\dfrac{6+5y}{3} ..................(3)}

Putting the value of x in equation (2),we get;

\longrightarrow\sf{2\bigg(\dfrac{6+5y}{3} \bigg)+3y=61}\\\\\\\longrightarrow\sf{\dfrac{12+10y}{3} +3y=61}\\\\\\\longrightarrow\sf{12+10y+9y=183}\\\\\\\longrightarrow\sf{12+19y=183}\\\\\\\longrightarrow\sf{19y=183-12}\\\\\\\longrightarrow\sf{19y=171}\\\\\\\longrightarrow\sf{y=\cancel{171/19}}\\\\\\\longrightarrow\bf{y=9}

Putting the value of y in equation (3),we get;

\longrightarrow\sf{x=\dfrac{6+5(9)}{3} }\\\\\\\longrightarrow\sf{x=\dfrac{6+45}{3}  }\\\\\\\longrightarrow\sf{x=\cancel{\dfrac{51}{3} }}\\\\\\\longrightarrow\bf{x=17}

Thus;

The value of x and y will be 17 and 9 .

Similar questions