Math, asked by jagjitsahota480, 2 months ago

By taking x= -5/3 ,y= 2/7 and z= 1/-4 , verify that --
(i) x ÷ (y + z) is not equal to x ÷ y + x ÷ Z
(ii) x ÷ (x - z) is not equal to x÷ y - X ÷ Z
(iii) (x + y) ÷ z = x ÷ z + y ÷ Z​

Attachments:

Answers

Answered by khairnarayush4233
2

Step-by-step explanation:

Answer

Open in answr app

x=94,y=12−7,z=3−2 then 

x−(y−2)=(x−y)−z

⇒94−[12−7−(3−2)]=[94−(12−7)]−(3−2)

⇒94−[12−7+32]=[94+127]−(3−2)

⇒94−[1

Answered by SachinGupta01
12

\bf \underline{ \underline{\maltese\:Given} }

 \sf  \implies x =  \dfrac{ - 5}{3}  \:   \: ,  \: \: y=  \dfrac{2}{7}  \:  \: ,  \:  \:and \:   \: z =  \dfrac{1}{ - 4}

\bf \underline{ \underline{\maltese \: To \:  verify} }

 \sf  (i) \:  x  \div  (y + z)     \not=  x  \div  y + x  \div  z

 \sf (ii)  \: x  \div  (x - z)  \not= x \div  y - x  \div  z

 \sf (iii)  \: (x + y)  \div  z = x  \div  z + y  \div  z

\bf \underline{ \underline{\maltese \: Solution} }

 \sf  (i)  \:  x  \div  (y + z)     \not=  x  \div  y + x  \div  Z

 \sf  \implies  \dfrac{ - 5}{3}  \div  \bigg(\dfrac{2}{7} +\dfrac{1}{ - 4}  \bigg)     \not=  \dfrac{ - 5}{3}  \div  \dfrac{2}{7} + \dfrac{ - 5}{3}  \div \dfrac{1}{ - 4}

 \sf   \implies \dfrac{ - 5}{3}  \div  \bigg(\dfrac{8 + ( - 7)}{28}  \bigg)     \not=  \dfrac{ - 5}{3}  \times  \dfrac{7}{2} + \dfrac{ - 5}{3}  \times  \dfrac{ - 4}{1}

 \sf   \implies \dfrac{ - 5}{3}   \div  \dfrac{1}{28}       \not=  \dfrac{ - 35}{6}  + \dfrac{20}{3}

 \sf   \implies \dfrac{ - 5}{3}  \times   \dfrac{28}{1}       \not=  \dfrac{ - 35}{6}  + \dfrac{20}{3}

 \sf   \implies \dfrac{ - 5}{ 3}  \times   \dfrac{ 28}{1}       \not=  \dfrac{ - 35 + 40}{6}

 \sf   \implies \dfrac{ - 140}{ 3}        \not=  \dfrac{ 5}{6}

━━━━━━━━━━━━━━━━━━━━━━━━

 \sf (ii)  \: x  \div  (x - z)  \not= x \div  y - x  \div  z

 \sf \implies \dfrac{ - 5}{3}  \div   \bigg(\dfrac{ - 5}{3} -  \dfrac{1}{ - 4}  \bigg)  \not= \dfrac{ - 5}{3} \div \dfrac{2}{7}  - \dfrac{ - 5}{3}  \div \dfrac{1}{ - 4}

\sf \implies \dfrac{ - 5}{3}  \div   \bigg(\dfrac{ - 5}{3}  +  \dfrac{1}{ 4}  \bigg)  \not= \dfrac{ - 5}{3}  \times  \dfrac{7}{2}  - \dfrac{ - 5}{3}   \times  \dfrac{ - 4}{ 1}

 \sf \implies \dfrac{ - 5}{3}  \div   \bigg(\dfrac{ - 20 + 3}{12}  \bigg)  \not= \dfrac{ - 35}{6}  - \dfrac{ 20}{3}

\sf \implies \dfrac{ - 5}{3}  \div   \dfrac{ - 17}{12}   \not= \dfrac{  - 35}{6}  - \dfrac{20}{3}

 \sf \implies \dfrac{ - 5}{3}   \times  \dfrac{ - 12}{17}   \not= \dfrac{  - 35 - 40}{6}

 \sf \implies \dfrac{ 20}{17}     \not=  \cancel\dfrac{  - 75}{6}

 \sf \implies \dfrac{ 20}{17}     \not=\dfrac{  - 25}{3}

━━━━━━━━━━━━━━━━━━━━━━━━

 \sf (iii)  \: (x + y)  \div  z = x  \div  z + y  \div  z

 \sf \implies \bigg(\dfrac{ - 5}{3}  + \dfrac{2}{7}\bigg)  \div \dfrac{1}{ - 4} = \dfrac{ - 5}{3}   \div  \dfrac{1}{ - 4} + \dfrac{2}{7}  \div  \dfrac{1}{ - 4}

 \sf \implies \bigg(\dfrac{ - 35 + 6}{21} \bigg)  \div \dfrac{1}{ - 4} = \dfrac{ - 5}{3}  \times  \dfrac{ - 4}{1} + \dfrac{2}{7}  \times  \dfrac{ - 4}{1}

 \sf \implies \dfrac{ - 29}{21} \div \dfrac{1}{ - 4} = \dfrac{ 20}{3}  + \dfrac{-8}{7}

 \sf \implies \dfrac{ - 29}{21} \times \dfrac{-4}{1} = \dfrac{ 20}{3}  -\dfrac{8}{7}

 \sf \implies \dfrac{116}{21} = \dfrac{ 140-24}{21}

 \sf \implies \dfrac{116}{21} = \dfrac{ 116}{21}

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions