Math, asked by TheIMMORTAL1223, 9 months ago

By the method of completing squares, find the roots of the quadratic equation : 2x2 - 2root2x + 1 = 0

Answers

Answered by Abhishek474241
6

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • 2x²-2√2x+1

{\sf{\green{\underline{\large{To\:find}}}}}

  • By completing squares method

{\sf{\pink{\underline{\Large{Explanation}}}}}

☞2x²-2√2x+1

Multiplying By 2

=>2(2x²-2√2x+1)

=>4x²-4√2+2

=>(2x)²-2×2x × √2+(√2)²-(√2)²+1

=>(2x-√2)²-2+1

=>(2x-√2)²=1

=>(2x-√2) =√1

Opening sign with +

2x-√2=1

=>2x=1+√2

=>X=(1+√2)/2

Opening sign with -

2x-√2=-1

=>2x=-1+√2

=>X=(-1+√2)/2

Answered by Anonymous
6

\bold\red{\underline{\underline{Answer:}}}

\bold{Roots \ are \frac{-1}{\sqrt2} \ and \frac{-1}{\sqrt2}}

\bold\orange{Given:}

\bold{The \ given \ quadratic \ equation \ is}

\bold{2x^{2}-2\sqrt2x+1=0}

\bold\pink{To \ find:}

\bold{Roots \ of \ the \ quadratic \ equation}

\bold{by \ completing \ the \ square \ method.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ quadratic \ equation \ is}

\bold{2x^{2}-2\sqrt2x+1=0}

\bold{Dividing \ the \ equation \ by \ 2, \ we \ get}

\bold{=>x^{2}-\sqrt2x+\frac{1}{2}=0}

\bold{=>x^{2}-\sqrt2x=\frac{-1}{2}}

___________________________________

\bold{=>[\frac{1}{2}×Coefficient \ of \ x]^{2}}

\bold{=>[\frac{1}{2}×-\sqrt2]^{2}}

\bold{=>(\frac{-\sqrt2}{2})^{2}}

\bold{=>\frac{2}{4}}

\bold{=>\frac{1}{2}}

___________________________________

\bold{Adding  \frac{1}{2} \ on \ both \ sides,}

\bold{we \ get}

\bold{=>x^{2}-\sqrt2x+\frac{1}{2}=\frac{-1}{2}+\frac{1}{2}}

\bold{=>(x+\frac{1}{\sqrt2})^{2}=0}

\bold{we \ get}

\bold{=>(x+\frac{1}{\sqrt2})(x+\frac{1}{\sqrt2})=0}

\bold{=>x=\frac{-1}{\sqrt2} \ or \frac{-1}{\sqrt2}}

\bold\purple{\tt{\therefore{Root \ are \ \frac{-1}{\sqrt2} \ and \frac{-1}{\sqrt2}.}}}

Similar questions