Math, asked by kingalsoiam606460, 9 days ago

By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ··· + n3 =
n(n + 1)
2
2

Answers

Answered by mathdude500
5

Appropriate Question :-

By the principle of mathematical induction, prove that

 \sf \:  {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  -  +  {n}^{3} =  {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}

 \red{\large\underline{\sf{Solution-}}}

Let assume that

\sf \:  P(n) : {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  -  +  {n}^{3} =  {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}

Step : 1 For n = 1

\rm :\longmapsto\:\sf  {1}^{3} =  {\bigg[\dfrac{1(1 + 1)}{2} \bigg]}^{2}

\rm :\longmapsto\:\sf  1 =  {\bigg[\dfrac{2}{2} \bigg]}^{2}

\rm :\longmapsto\:\sf  1 =  1

\bf\implies \:P(n) \: is \: true \: for \: n = 1

Step : 2 Assume that P(n) is true for n = k where k is some natural number.

\sf \:  P(k) : {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  -  +  {k}^{3} =  {\bigg[\dfrac{k(k + 1)}{2} \bigg]}^{2}

Step : 3 We have to prove that P(n) is true for n = k + 1

\sf  \: {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  - +  {k}^{3}   +  {(k + 1)}^{3} =  {\bigg[\dfrac{(k + 1)(k + 1)}{2} \bigg]}^{2}

Consider LHS

\sf  \: {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  - +  {k}^{3}   +  {(k + 1)}^{3}

\rm \:  =  \:  {\bigg[\dfrac{k(k + 1)}{2} \bigg]}^{2} +  {(k + 1)}^{3}

\rm \:  =  \: \dfrac{ {k}^{2}  {(k + 1)}^{2} }{4}  +  {(k + 1)}^{3}

\rm \:  =  \:  {(k + 1)}^{2}\bigg[\dfrac{ {k}^{2} }{4}  + k + 1\bigg]

\rm \:  =  \:  {(k + 1)}^{2}\bigg[\dfrac{ {k}^{2} + 4k + 4}{4}\bigg]

\rm \:  =  \:  {(k + 1)}^{2}\bigg[\dfrac{ {(k + 2)}^{2}}{4}\bigg]

\rm \:  =  \:  {\bigg[\dfrac{k(k + 1)}{2} \bigg]}^{2}

\bf\implies \:P(n) \: is \: true \: for \: n = k + 1

Hence,

By the Process of Principal of Mathematical Induction,

 \red{\boxed{\sf \:  {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  -  +  {n}^{3} =  {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}}}

Similar questions