by u.v method solve tanx.cotx
Answers
Answered by
0
Explanation:
Let y=tanx.cotx
Or dy/dx=d/dx(tanx.cotx)
Or dy/dx=cotx.d/dx(tanx)+tanx.d/dx(cotx)
Or dy/dx=sec^2x.cotx+tanx(-cosec^2x)
Or dy/dx=(1/cos^2x)×cosx/sinx-(1/sin^2)×sinx/cosx
or dy/dx=1/(sinx.cosx)-1/(sin.cosx)
Or dy/dx=0.
Hope this helps mate ☺️.
Similar questions