Math, asked by feeqa2002, 2 months ago

By using Chain Rule, find dy/dx
for the equation y = tan(2x power 3 - 7)

Answers

Answered by richapariya121pe22ey
1

Answer:

Step-by-step explanation:

y = tan(2x^3 - 7)\\\frac{dy}{dx}= \frac{d}{dx}(tan(2x^3-7))\\=sec^2(2x^3-7) \times \frac{d}{dx}(2x^3 - 7)\\=sec^2(2x^3-7) \times (\frac{d}{dx}2x^3 - \frac{d}{dx}7)\\=sec^2(2x^3-7) \times (2 \times 3x^2 - 0)\\=sec^2(2x^3-7) \times (6x^2)\\=6x^2sec^2(2x^3-7)

Similar questions