Math, asked by skshamraizada69, 10 months ago

By using elementary operations, find the inverse of the matrix
 |1  - 1 \\ 2 \: 3|

Answers

Answered by Anonymous
19

AnswEr :

Given Matrix,

 \left[\begin{array}{c c}1 & -1 \\2 & 3 \end{array} \right]

The order of the matrix is 2 × 2,thus the identity matrix would be :

\sf{I} = \left[\begin{array}{c c}1 & 0 \\ 0& 1 \end{array} \right]

By Row Elementary Operations,

Suppose x is the inverse of the given matrix

\implies \left[\begin{array}{c c}1 & -1 \\2 & 3 \end{array}\right] =\left[\begin{array}{c c}1 & 0 \\ 0& 1 \end{array}\right] \sf{x}

  • \sf R_2 \longrightarrow R_2 - 2R_1

Then,

\implies \left[\begin{array}{c c}1 & -1 \\ 0 & 5 \end{array}\right] =\left[\begin{array}{c c}1 & 0 \\ -2 & 1 \end{array}\right] \sf{x}

  • \sf R_2 \longrightarrow \dfrac{1}{5}R_2

\implies \left[\begin{array}{c c}1 & -1 \\ 0 & 1 \end{array}\right] =\left[\begin{array}{c c}1 & 0 \\ - \dfrac{2}{5}& \dfrac{1}{5} \end{array}\right] \sf{x}

  • \sf R_1 \longrightarrow R_1 + R_2

\implies  \left[\begin{array}{c c}1 & 0 \\ 0 & 1 \end{array}\right] =\left[\begin{array}{c c}\dfrac{3}{5} & \dfrac{1}{5} \\ \\ - \dfrac{2}{5}& \dfrac{1}{5} \end{array} \right] \sf{x}

Inverse of the matrix would be :

\left[\begin{array}{c c}\dfrac{3}{5} & \dfrac{1}{5} \\ \\ - \dfrac{2}{5}& \dfrac{1}{5} \end{array} \right]

Similar questions