Math, asked by akasgagan6540, 5 months ago

By using elementary row transformations, find the inverse of
2 0 - 1
A = 5 1 0
0 1 3​

Answers

Answered by Itzraisingstar
11

Answer:

\huge\boxed{\boxed{Hey\:mate\:here\:is\:your\:answer:}}

\left[\begin{array}{ccc}2&0&-1\\5&1&0\\0&1&3\end{array}\right]=  A,

\left[\begin{array}{ccc}2&0&-1\\5&1&0\\0&1&3\end{array}\right] =\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right],

\large\boxed{R_1=\frac{R_2}{2}},

\left[\begin{array}{ccc}1&0&\frac{-1}{2} \\5&1&0\\0&1&3\end{array}\right] =\left[\begin{array}{ccc}\frac{1}{2} &0&0\\0&1&0\\0&0&1\end{array}\right],

\large\boxed{R_1=R_2-5R_1}

\left[\begin{array}{ccc}1&0&\frac{-1}{2} \\0&1&\frac{5}{2} \\0&1&3\end{array}\right] =\left[\begin{array}{ccc}\frac{1}{2} &0&0\\\frac{-5}{2} &1&0\\0&0&1\end{array}\right],

\large\boxed{R_3-R_3-R_2},

\left[\begin{array}{ccc}1&0&\frac{-1}{2} \\0&1&\frac{5}{2} \\0&0&\frac{1}{2} \end{array}\right] =\left[\begin{array}{ccc}\frac{1}{1} &0&0\\\frac{-5}2} &0&0\\\frac{5}{2} &-1&1\end{array}\right],

\large\boxed{R_3=2R_3}

\left[\begin{array}{ccc}1&0&\frac{-1}{2} \\0&1&\frac{5}{2} \\0&0&1\end{array}\right] =\left[\begin{array}{ccc}\frac{1}{2} &0&0\\\frac{-5}{2} &1&0\\5&-2&2\end{array}\right],

\large\boxed{{R_1=R_1+\frac{R_3}{2} };R_2=R_2-\frac{5}{2} R_3},

\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] = \left[\begin{array}{ccc}3&-1&1\\-15&6&-5\\5&-2&2\end{array}\right],

So, A^-1=\left[\begin{array}{ccc}3&-1&-1\\-15&6&-5\\5&-2&-2\end{array}\right].

\huge\boxed{\boxed{Hope\:it\:helps\;you}}

Similar questions