Math, asked by tyagipooja668, 1 year ago

by using long division method show that x minus 3 is a factor of 6 + X - 4 x square + x cube​

Answers

Answered by MaheswariS
7

(x^3-4x^2+x+6)\div\;x-3

\begin{array}{r|l}&x^2-x-2\\\cline{2-2}\\x-3&x^3-4x^2+x+6\\&x^3-3x^2\\\cline{2-2}&\;\;\;\;\;-x^2+x\\&\;\;\;\;\;-x^2+3x\\\cline{2-2}&\;\;\;\;\;\;\;\;\;\;\;\;-2x+6\\&\;\;\;\;\;\;\;\;\;\;\;\;-2x+6\\\cline{2-2}&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0\\\cline{2-2}\end{array}

\text{From the above long division method, it is clear that }

\text{when $x^3-4x^2+x+6$ is divided by $x-3$ the remainder is 0}

\implies\text{x-3 is a factor}

Answered by muscardinus
3

Step-by-step explanation:

We need to show that (x-3) is a factor of (6+x-4x^2+x^3) using long division method. We can write it as (x^3-4x^2+x+6)

\begin{array}{r|l}&x^2-x-2\\\cline{2-2}\\x-3&x^3-4x^2+x+6\\&x^3-3x^2\\\cline{2-2}&\;\;\;\;\;-x^2+x\\&\;\;\;\;\;-x^2+3x\\\cline{2-2}&\;\;\;\;\;\;\;\;\;\;\;\;-2x+6\\&\;\;\;\;\;\;\;\;\;\;\;\;-2x+6\\\cline{2-2}&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0\\\cline{2-2}\end{array}

The above long division method shows that the remainder at the end is equal to 0. It would mean that (x-3) is a factor of (x^3-4x^2+x+6).

Learn more,

Long division method

https://brainly.in/question/12157721

Similar questions