Math, asked by dhivakar8012359010, 4 months ago

by using method of variation of parameter find p(D^2+1)y-cosec x​

Answers

Answered by ajjubhai946648
0

Step-by-step explanation:

I am in 4std....Hiiiiiiii II

Answered by mathdude500
4

Solve by using method of variation of parameters

\tt \:  ( {D}^{2}  + 1)y = cosecx

Answer :-

Given equation is

\tt \:  \longrightarrow \: ( {D}^{2}  + 1)y = cosecx

Step 1 :- To find general solution:-

\tt \:  \longrightarrow \: The \:  characteristic  \: equation \:  is \:  {m}^{2}  + 1 = 0

\tt\implies \: {m}^{2}  =  - 1

\tt\implies \: m \:  =  \:  \pm \: i

\tt \:  \longrightarrow \: So \:  the \:  general  \: solution  \:  is \: given \: by \:

\tt \:  \longrightarrow \: complementary \: function \:  = a \: cosx \:  +  \: b \: sinx -  - (i)

Step 2 :- To find the Wronskian (W) :-

Now, here

\tt \:  \longrightarrow \: y_1 = cosx \\ \tt \:  \longrightarrow \: y_2 = sinx \\ \tt \:  \longrightarrow \: y_1' =  - sinx \\ \tt \:  \longrightarrow \:y_2' = cosx

\tt \:  \longrightarrow \: Now,  \: W \:  = y_1y_2' - y_2y_1'

\tt\implies \:W \:  =  {cos}^{2} x +  {sin}^{2} x = 1

Step 3 :- To find the particular solution by using formula :-

\tt \:  y_p(x) =  - y_1 \int \: \dfrac{y_2 \: f(x)}{W} dx +  y_2 \int \: \dfrac{y_1 \: f(x)}{W} dx

Step 4 :- Evaluation of integrals :-

\tt \:  \longrightarrow \: Now, \: consider :  \: -  \: y_1 \int \: \dfrac{y_2 \: f(x)}{W}

☆ On substituting the values we get,

\tt \:  \longrightarrow \:  =  \: - cosx \int \: \dfrac{(  sin \: x)\: cosecx}{1} dx

\tt \:  \longrightarrow \:  =  -  \: cosx \int \: dx

\tt \:  \longrightarrow \:  = -  \:  x \: cosx

\tt \:  \longrightarrow \: Now, \: consider :  \:   \: y_2 \int \: \dfrac{y_1 \: f(x)}{W} dx

\tt \:  \longrightarrow \:  = sin \: x \:  \int \: \dfrac{cosx \: cosecx}{ 1} dx

\tt \:  \longrightarrow \:  = sinx \:  \int \: cotx \: dx

\tt \:  \longrightarrow \:  = sinx \: log \: (sinx)

Step 5 :- Complete solution is given by

\tt \:  y \:  =  \: acosx \:  +  \: bsinx \:  - xcosx \:  + sinx \:  log(sinx)

Similar questions