Math, asked by subhash7043, 10 months ago

By using suitable identities, evaluate the following:
(i) (103)^3
(i) (99)^3​​

Answers

Answered by krdivya
5

Answer:

1. 1092727

2. 970299

Step-by-step explanation:

use

( a-b) whole cube formuale

Answered by Glorious31
9

\huge{\underline{\underline{\tt{ Solution : }}}}

1) \tt{ {(103)}^{3}} can be written as : \tt{ {(100+3)}^{3}}

If we carefully observe ; \tt{ {100+3}^{3}} is in the form of \tt{ {(a+b)}^{3}} so we will use the same identity to solve the given problem.

a = 100

b = 3

\tt{ {(a+b)}^{3} = {a}^{3} + {b}^{3} + 3 \times{a}^{2} \times b + 3a{b}^{2}}

When we substitute the values of (a) and (b) we get :

\longrightarrow{\tt{ {(a+b)}^{3} = {100}^{3} + {3}^{3} + 3 \times{100}^{2}\times 3  + 3 \times 100 \times{3}^{2}}}

\longrightarrow{\tt{ 1000000 + 27 + 3 \times 10000 \times 3 + 300 \times 9}}

\implies{\tt{ 1092727}}

Answer : \large{\boxed{\tt{ 1092727}}}

Verification :

\tt{ \sqrt[3] {1092727} \implies 103}

__________________

2)\tt{ {99}^{3}} can be written as \tt{ {(100-1)}^{3}}

If we carefully observe the given problem is in the form of \tt{ {(a-b)}^{3}} . So ,we will use the same identity to solve the given problem.

a = 100

b = 1

\tt{ {(a-b)}^{3} = {a}^{3} - {b}^{3} - 3\times {a}^{2}\times b + 3 \times a \times {b}^{2}}

When we substitute the values of (a) and (b) we get :

\longrightarrow{\tt{ {(a-b)}^{3} = {100}^{3} - {1}^{3} - 3 \times {100}^{2} \times 1 + 3 \times 100 times {1}^{2}}}

\longrightarrow{\tt{ 1000000 - 1 - 3 \times 10000 \times 1  + 300 \times 1}}

\implies{\tt{ 970299}}

Answer : \large{\boxed{\tt{970299}}}

Verification :

\tt{\sqrt[3]{970299} \implies 99}

Similar questions