Math, asked by imjohnnyyuvraj09, 10 months ago

By using the laws of logarithm, find the value of log(81/8)-2log(3/2)+3log(2/3)+log(3/4)​

Answers

Answered by kaushik05
35

Answer:

  \huge\boxed{ \green{ 2 log( \frac{9}{2} ) }}

Soln refers to the attachment

Formula used here :

 \boxed{ \red{\bold{ log(x)  +  log(y)  =  log(xy) }}}

  \boxed{ \purple{\bold{ log(x)  -  log(y)  =  log( \frac{x}{y} ) }}}

 \boxed{ \bold{ \blue{a \:   log(b)  =  log( {b}^{a} ) }}}

Attachments:
Answered by RvChaudharY50
53

\pink{\bold{\underline{\underline{Question:-}}}}

find the value of log(81/8)-2log(3/2)+3log(2/3)+log(3/4) ?

\green{\bold{\underline{\underline{Step\:by\:step\:explanation:}}}}

\red{\bold{we\:know\:that:--}}

\orange{\bold{Product\:Rule\:Law:}}

loga (MN) = loga M + loga N

\pink{\bold{Quotient\:Rule\:Law:}}

loga (M/N) = loga M - loga N

\green{\bold{Power\:Rule\:Law:}}

IogaM^(n) = n Ioga M

Using all in Question now ,

log(81/8)-2log(3/2)+3log(2/3)+log(3/4)

 log( \frac{81}{8} )  -  log( \frac{3}{2} ) ^{2}   +  log( \frac{2}{3} )^{3}  +  log( \frac{3}{4} )  \\  \\  \implies \: log( \frac{81}{8} )  -  log( \frac{9}{4}  \times  \frac{8}{27} \times  \frac{3}{4}  )  \\  \\  \implies \: log( \frac{81}{8} ) -  log( \frac{1}{2} )  \\  \\ \implies \:  log( \frac{ \frac{81}{8} }{ \frac{1}{2} } )  \\  \\ \implies \:  log( \frac{81}{8}  \times  \frac{2}{1} )  \\  \\ \implies \:  log( \frac{81}{4} )  \\  \\ \implies \: log( \frac{9}{2} )^{2}

\textsf{</strong><strong>our</strong><strong> </strong><strong>answer</strong><strong> </strong><strong>is</strong><strong>:</strong><strong>-</strong><strong>}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:</strong><strong>2 log( \frac{9}{2} )</strong><strong>}}}}}}}}}}

\huge\underline\mathfrak\green{Hope\:it\:Helps\:You}

Similar questions