by using which equipment we can see the radiations
Answers
Answered by
0
by using smart surveys we can see raditions
Answered by
1
Radiation cannot be detected by human senses. A variety of handheld and laboratory instruments is available for detecting and measuring radiation. The most common handheld or portable instruments are:
Geiger Counter, with Geiger-Mueller (GM) Tube or Probe.
MicroR Meter, with Sodium Iodide Detector
Portable Multichannel Analyzer
Ionization (Ion) Chamber—This is an air-filled chamber with an electrically conductive inner wall and central anode and a relatively low applied voltage. When primary ion pairs are formed in the air volume, from x-ray or gamma radiation interactions in the chamber wall, the central anode collects the electrons and a small current is generated. This in turn is measured by an electrometer circuit and displayed digitally or on an analog meter. These instruments must be calibrated properly to a traceable radiation source and are designed to provide an accurate measure of absorbed dose to air which, through appropriate conversion factors, can be related to dose to tissue. In that most ion chambers are "open air," they must be corrected for change in temperature and pressure. Common readout units are milliroentgens and roentgen per hour (mR/hr or R
Neutron REM Meter, with Proportional Counter—A boron trifluoride or helium-3 proportional counter tube is a gas-filled device that, when a high voltage is applied, creates an electrical pulse when a neutron radiation interacts with the gas in the tube. The absorption of a neutron in the nucleus of boron-10 or helium-3 causes the prompt emission of a helium-4 nucleus or proton respectively. These charged particles can then cause ionization in the gas, which is collected as an electrical pulse, similar to the GM tube. These neutron-measuring proportional counters require large amounts of hydrogenous material around them to slow the neutron to thermal energies. Other surrounding filters allow an appropriate number of neutrons to be detected and thus provide a flat-energy response with respect to dose equivalent. The design and characteristics of these devices are such that the amount of secondary charge collected is proportional to the degree of primary ions produced by the radiation. Thus, through the use of electronic discriminator circuits, the different types of radiation can be measured separately. For example, gamma radiation up to rather high levels is easily rejected in neutron counters.
Radon Detectors
Geiger Counter, with Geiger-Mueller (GM) Tube or Probe.
MicroR Meter, with Sodium Iodide Detector
Portable Multichannel Analyzer
Ionization (Ion) Chamber—This is an air-filled chamber with an electrically conductive inner wall and central anode and a relatively low applied voltage. When primary ion pairs are formed in the air volume, from x-ray or gamma radiation interactions in the chamber wall, the central anode collects the electrons and a small current is generated. This in turn is measured by an electrometer circuit and displayed digitally or on an analog meter. These instruments must be calibrated properly to a traceable radiation source and are designed to provide an accurate measure of absorbed dose to air which, through appropriate conversion factors, can be related to dose to tissue. In that most ion chambers are "open air," they must be corrected for change in temperature and pressure. Common readout units are milliroentgens and roentgen per hour (mR/hr or R
Neutron REM Meter, with Proportional Counter—A boron trifluoride or helium-3 proportional counter tube is a gas-filled device that, when a high voltage is applied, creates an electrical pulse when a neutron radiation interacts with the gas in the tube. The absorption of a neutron in the nucleus of boron-10 or helium-3 causes the prompt emission of a helium-4 nucleus or proton respectively. These charged particles can then cause ionization in the gas, which is collected as an electrical pulse, similar to the GM tube. These neutron-measuring proportional counters require large amounts of hydrogenous material around them to slow the neutron to thermal energies. Other surrounding filters allow an appropriate number of neutrons to be detected and thus provide a flat-energy response with respect to dose equivalent. The design and characteristics of these devices are such that the amount of secondary charge collected is proportional to the degree of primary ions produced by the radiation. Thus, through the use of electronic discriminator circuits, the different types of radiation can be measured separately. For example, gamma radiation up to rather high levels is easily rejected in neutron counters.
Radon Detectors
Similar questions