Math, asked by Aksharasree425, 10 months ago

By what number should ((-3)/5)^(-3)be divided so that the quotient may be (6/125)^(-2)?

Answers

Answered by vicky220692
3

Step-by-step explanation:

We know that

dividend = </p><p>divisor \times quotient + reminder

 here  \: dividend \:  = ({ \frac{ - 3}{5} })^{ - 3}

quotient \:  = ( { \frac{6}{125} })^{ - 2}

then,

According to above formula,

 ({ \frac{ - 3}{5} })^{ - 3}  = divisor \times  ({ \frac{6}{125} })^{ - 2}  + 0

we \: use \: this \: formula \:  \\ ( { \frac{a}{b} })^{ - n}  =   ({ \frac{b}{a} })^{n}

Now ,

 ({ \frac{ - 5}{3} })^{3}  =  \: divisor \:  \times  \:  ({ \frac{125}{6} })^{2}

 \frac{( { \frac{ - 5}{3} })^{3} }{ ({ \frac{125}{6} })^{2} }  = divisor

we \: use \: this \: formula \:  \frac{ \frac{a}{b} }{ \frac{c}{d} }   \:  =  \:  \frac{a}{b}  \times  \frac{c}{d}

So,

 ({ \frac{ - 5}{3} })^{3}  \times  ({ \frac{6}{125} })^{2}  = divisor

Hence,

divisor =  -   \frac{5}{3}  \times  \frac{5}{3}  \times  \frac{5}{3}  \times  \frac{6}{125}  \times  \frac{6}{125}

divisor =  -   \frac{1}{3}  \times  2 \times  \frac{2}{125}

divisor =  - \frac{4}{375}  \: answer

Similar questions