Math, asked by siddiquianjum07, 1 month ago

by what rational number should - 9 upon 35 be multiplied to get 3 upon 5 ​

Answers

Answered by sg7546394
1

Step-by-step explanation:

------------------------------

▪ Given :-

f(A) = 5cosA + 12sinA + 12.

-------------------------------

▪ To Find :-

Maximum Value of f(A).

-------------------------------

▪ Concept To Mind :-

The maximum and minimum value of any function at the the point where First Derivative is Zero.

For Maxima the sign of second derivative should be negative.

-------------------------------

▪ Solution :-

》We Have ,

\large{f(A)} = 5 \cos A + 12 \sin A + 12f(A)=5cosA+12sinA+12

\bigstar \: \underline{ \pmb{ \mathfrak{ Differentiating \: \: both \: \: sides \: \: \text{w}.r.t \: \: \text{A} }}}★

Differentiatingbothsidesw.r.tA

Differentiatingbothsidesw.r.tA

\large : \longmapsto f'(A) = - 5 \sin A + 12 \cos A:⟼f

(A)=−5sinA+12cosA

\bigstar \: \underline{ \pmb{ \mathfrak{ Differentiating \: \: both \: \: sides \: \: \text{w}.r.t \: \: \text{A} }}}★

Differentiatingbothsidesw.r.tA

Differentiatingbothsidesw.r.tA

f''(A) = - 5 \cos A - 12 \sin Af

′′

(A)=−5cosA−12sinA

Now,

\large \bigstar \: \underline{ \pmb{ \mathfrak{ For \: \: Maxima \: \: and \: \: Minima : }}} -★

ForMaximaandMinima:

ForMaximaandMinima:

\begin{gathered}f'(A) = 0 \\ \\ : \longmapsto - 5 \sin A + 12\cos A = 0 \\ \\ : \longmapsto12 \cos A = 5 \sin A \\ \\ \large \pink{ : \longmapsto \boxed{\tan A = \frac{12}{5} }}\bf\:\:\:\:----(1)\end{gathered}

f

(A)=0

:⟼−5sinA+12cosA=0

:⟼12cosA=5sinA

:⟼

tanA=

5

12

−−−−(1)

: \longmapsto A = \tan {}^{ - 1} \bigg( \dfrac{12}{5} \bigg):⟼A=tan

−1

(

5

12

)

\large \bigstar \: \underline{ \pmb{ \mathfrak{ From \: \: (1) : }}} -★

From(1):

From(1):

\begin{gathered} \tan A = \dfrac{12}{5} \\ \\ \sec {}^{2} A = 1 + \frac{144}{25} = \frac{169}{25} \\ \\ : \longmapsto \sec A = \frac{13}{5} \\ \\ : \longmapsto \boxed{ \cos A = \frac{5}{13}} \\ \\ : \longmapsto \sin A = \sqrt{1 - \frac{25}{169} } = \sqrt{ \frac{144}{169} } \\ \\ : \longmapsto \boxed{\sin A = \frac{12}{13} }\end{gathered}

tanA=

5

12

sec

2

A=1+

25

144

=

25

169

:⟼secA=

5

13

:⟼

cosA=

13

5

:⟼sinA=

1−

169

25

=

169

144

:⟼

sinA=

13

12

Similar questions