Math, asked by zoya4381, 2 months ago

By what rational number should we multiply p/q so that the product is r/s ? (a) p/a = -2/11, r/s=6/11 (b) p/q +-12/13 , r/s =16/39

Answers

Answered by SachinGupta01
8

\bf \underline{ \underline{\maltese\:Assumption } }

 \sf  Let  \: the  \: second \:  rational  \: number  \: be \:  x.

 \bf \underline{ Now, }

 \sf (a)  \:  \dfrac{ -2}{11}  \times x =  \dfrac{6}{11}

 \sf  \implies x = {   \dfrac{ 6}{11}   \times \dfrac{ - 11}{2} }

 \sf  \implies x =    \dfrac{ -6}{2}   =  - 3

 \sf  Hence, \dfrac{ -2}{11} \: should \: be \: multiplied \: by \:  - 3 \: to \: get \: \dfrac{6}{11}

 \bf \underline{ Verification }

 \sf   \implies {  \dfrac{ -2}{11}  \times - 3} =  \dfrac{6}{11}

 \sf   \implies  \dfrac{6}{11}  =  \dfrac{6}{11}

 \sf   \implies LHS  =  RHS

━━━━━━━━━━━━━━━━━━━━━━━━

 \sf (b)  \:  \dfrac{ -12}{13}  \times x =  \dfrac{16}{39}

 \sf  \implies x = {   \dfrac{16}{39}  \times\dfrac{ - 13}{12} }

 \sf  \implies x = {   \dfrac{4}{3}  \times\dfrac{ - 1}{3} } =  \dfrac{ - 4}{9}

 \sf  Hence, \dfrac{ -12}{13}  \: should \: be \: multiplied \: by \: \dfrac{ - 4}{9}  \: to \: get \: \dfrac{16}{39}

 \bf \underline{ Verification }

 \sf  \implies \dfrac{ -12}{13}  \times   \dfrac{ - 4}{9}  =  \dfrac{16}{39}

 \sf  \implies \dfrac{16}{39}  =  \dfrac{16}{39}

 \sf   \implies LHS  =  RHS

Similar questions