Math, asked by arunaananya2008, 1 month ago

By which smallest number must 5400 be multiplied to make it a perfect cube?​

Answers

Answered by Anonymous
35

\leadsto\sf\purple{Solution:-}

\sf{First  \: do  \: prime  \: factorisation  \: of  \: } \sf \purple{5400}

 \begin{array}{r | l}2 &5400\\  2&2700\\2&1350\\ 3&675\\ 3&225 \\ 3&75\\ 5&25\\ 5&5\\&1 \end{array}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf{\sqrt[3]{5400}  =  \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5}}

\sf\purple{Now \:  make  \: triplet \:  means \:  group  \: of \:  3 \:  numbers}

\sf{\sqrt[3]{5400}  =  2 \times 3 \times  \sqrt[2]{5} }

\sf \purple{ 5  \: is \:  not \:  in \:  a \:  triplet \:  group \:  so  \: 5400 \:  is \:  not  \: a \:  perfect  \: cube}

\sf{5  \: is  \: the \:  smallest \:  number \:  which \:  must \:  be \:  multiplied \:  in \:  5400 \:  to  \: make \:  it  \: a \:  perfect  \: cube}

Similar questions