(C) 1000
(d) 10000
58. If sin e = 3/5, then find the value of tan
2e :
(a) 24/25
(b) 12/13
(c) 24/7
(d) 7/24
Answers
Answered by
3
Answer:
yes I know about this question
Answered by
1
Step-by-step explanation:
SIN THETA = 3/5
TAN 2THETA =??
Use the trig identity:
Use the trig identity: tan2A=2tanA/ 1−tan^2A(1).
A(1).
A(1). First, find tanA=sinA/cosA.
cosA. sinA = 3/5 --> sin^2A=9/25 -->
cos^2A=1−9/25=15/25 -
25 --->
25 ---> cosA=±4/5 .
5 .Because A is in Quadrant II, its cos is negative.
5 .Because A is in Quadrant II, its cos is negative. cosA=−4/5
5
tanA=sinA/cosA=(3/5)(−5/4)=−3/4
4
4 Replace value of tan A = -3/4 into identity (1) -->
tan2A=−3/2 /1−9/16=(−3/2)(16/7)
=−24/7
7Check by calculator.
7Check by calculator.cosA=−4/5=−0.8 --> A=143.13 -->
--> A=143.13 --> 2A=286.26 .-->
-> tan2A=−3.43
−24/7=−3.43.
7=−3.43. OK
Similar questions