Math, asked by prashantakumarnag99, 7 months ago

(C) 1000
(d) 10000
58. If sin e = 3/5, then find the value of tan
2e :
(a) 24/25
(b) 12/13
(c) 24/7
(d) 7/24​

Answers

Answered by kr6834008
3

Answer:

yes I know about this question

Answered by amourya13
1

Step-by-step explanation:

SIN THETA = 3/5

TAN 2THETA =??

Use the trig identity:

Use the trig identity: tan2A=2tanA/ 1−tan^2A(1).

A(1).

A(1). First, find tanA=sinA/cosA.

cosA. sinA = 3/5 --> sin^2A=9/25 -->

cos^2A=1−9/25=15/25 -

25 --->

25 ---> cosA=±4/5 .

5 .Because A is in Quadrant II, its cos is negative.

5 .Because A is in Quadrant II, its cos is negative. cosA=−4/5

5

tanA=sinA/cosA=(3/5)(−5/4)=−3/4

4

4 Replace value of tan A = -3/4 into identity (1) -->

tan2A=−3/2 /1−9/16=(−3/2)(16/7)

=−24/7

7Check by calculator.

7Check by calculator.cosA=−4/5=−0.8 --> A=143.13 -->

--> A=143.13 --> 2A=286.26 .-->

-> tan2A=−3.43

−24/7=−3.43.

7=−3.43. OK

Similar questions