Math, asked by ashu9399tiwari2006, 9 months ago


(c) 5^x5^x+1 = 125
Solve for x

Answers

Answered by mysticd
17

 Given \: \red{ 5^x\times 5^{x+1} = 125 }

\implies 5^{x+x+1} = 5^{3}

_______________

/* By Exponential Law *

 \boxed { \pink { a^{m} \times a^{n} = a^{m+n}}}

________________

 \implies 5^{2x+1} = 5^{3}

 \implies 2x + 1 = 3

______________

/* By Exponential Law */

 \boxed { \pink {If \: a^{m} = a^{n} \implies m = n }}

________________

 \implies 2x = 3-1

 \implies 2x = 2

 \implies x = \frac{2}{2}

 \implies x = 1

Therefore.,

 \green { Value \: of \: x = 1}

•••♪

Answered by Anonymous
20

\bf{\underline{\underline{\bigstar\bigstar\: Some \: information : }}}\\

\:\:

  • {}x}^{a} \times {x}^{b} = {x}^{a + b}} \\

  • {{x}^{a} = {x}^{b} \implies a = b} \\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: Solution :}}}\\

\:\:

{{5}^{x} \times {5}^{x + 1} = 125}\\

{\impies {5}^{x + 1 + x} = {5}^{3}}\\

{\impies {5}^{2x + 1 } = {5}^{3}}\\

{\impies 2x + 1  = 3}\\

{\impies 2x  = 3 - 1}\\

{\impies 2x  = 2}\\

\displaystyle{\impies x  = \frac{2}{2}}\\

{\implies x  = 1}\\

\:\:

\bold{ value \: of \: x = 1 }\\

Similar questions