Math, asked by reep4069, 6 months ago

C and D each represent different digits. For example, if C = 2, then CCC = 222. If C + CC = D4, wh*
A
B
C
D

Answers

Answered by vedparkashkhushi
8

Answer:

candd\%e \tan( \binom{e \cot( \beta  log( log( ln( \alpha  \alpha  \alpha  ln(?) ) ) ) ) }{?} )

Answered by dikshaagarwal4442
0

Answer:

The value of C = 7 and D = 8.

Step-by-step explanation:

Given data, C = 2.

  • We can express the number CCC like, CCC = (100 × C) + (10 × C) + C

                                                          CCC = (100 × 2) + (10 × 2) + 2 [as C =2]

                                                                     = 200 + 20 + 2

                                                                    = 222

  • The value of CC = 10C + C  [as we have seen CCC = 100C + 10C + C]

                                    = 11C = 11 × 2 = 22

      So, the value of C + CC = 2 + 22 = 24..........(1)

      The given value of C + CC = D4 ..................(2)

     Comparing (1) and (2) we can write, D4 = 24

                                                              (D × 10) + 4 = (2 × 10) + 4

                                                               D × 10 = 2 × 10

                                                               D = C = 2

  So the value of C can not be 2.

  • If we put C = 7, then CCC = 777

       C + CC = 7 + 77 = 84 = D4

       So, D = 8 and here C ≠ D

       ∴ The value of C = 7 and D = 8.

For similar questions visit the links given below:

https://brainly.in/question/8354687

https://brainly.in/question/15600868

Similar questions