Math, asked by innocentshivu5227, 1 year ago

© Factorise :
 \frac{1}{27}(2x + 5y) {}^{3}   + (  - \frac{5 }{3} y +  \frac{3}{4} z) {}^{3}  + ( -  \frac{3}{4} z -  \frac{2}{3} x) {}^{3}  \\
® OpeN chaLenGE tO aLL ®


™Best Answer will be marked as BRAINLIEST​

Answers

Answered by thakurji80
0

Answer:

Hii mate

your solution

Attachments:
Answered by Anonymous
15

SOLUTION

 \frac{1}{27}(2x + 5y) {}^{3}  + ( \frac{  - 5}{3}y +  \frac{3}{4}  z) {}^{3}  + ( \frac{ - 3}{4} z -  \frac{2}{3} x) {}^{3}  \\\\  =  > [ \frac{1}{ 3} (2x + 5y)] {}^{3}  + ( \frac{ - 5}{3} y +  \frac{3}{4} z) {}^{3}  + ( \frac{ - 3}{4} z -  \frac{2}{3} x) {}^{3} \\ \\  =  > ( \frac{2}{3} x +  \frac{5}{3} y) {}^{3}  + ( \frac{ - 5}{3} y +  \frac{3}{4} z) {}^{3}  + ( \frac{ - 3}{4} z -  \frac{2}{3} x) {}^{3}

We know that, a^3+ b^3+c^3= 3abc, if a+b+c=0

Here, a+b+c =

 =  &gt; ( \frac{2}{3} x +  \frac{5}{3} y) + ( \frac{ - 5}{3}y +  \frac{3}{4} z) + ( \frac{ - 3}{4} z -  \frac{2}{3} x) </strong><strong>\</strong><strong>\</strong><strong>\\  =  &gt;  \frac{2}{3} x +  \frac{5}{3} y -  \frac{5}{3} y +  \frac{3}{4} z -  \frac{3}{4} z -  \frac{2}{3} x = 0 \\ so \\  =  &gt; ( \frac{2}{3} x +  \frac{5}{3} y) {}^{3}  + ( \frac{ - 5}{3} y +  \frac{3}{4} z) {}^{3}  + ( \frac{ - 3}{4} z -  \frac{2}{3} x) {}^{3}  = 3( \frac{2}{3} x +  \frac{5}{3} y)(  \frac{ - 5}{3}y +  \frac{3}{4} z)( \frac{ - 3}{4} z -  \frac{2}{3} x)

hope it helps ☺️

Similar questions