Science, asked by sanikadevkar2006, 3 months ago

(c) Give one dis
(v) Label the given diagram of Electromagnetic induction correctly.
2.
3.
4.
N
+
1
5.
S
6.
n
Electromagnetic induction​

Answers

Answered by singhrajnandini659
1

Answer:

Changing Magnetic Fields

In the preceding section, we learned that a current creates a magnetic field. If nature is symmetrical, then perhaps a magnetic field can create a current. In 1831, some 12 years after the discovery that an electric current generates a magnetic field, English scientist Michael Faraday (1791–1862) and American scientist Joseph Henry (1797–1878) independently demonstrated that magnetic fields can produce currents. The basic process of generating currents with magnetic fields is called induction; this process is also called magnetic induction to distinguish it from charging by induction, which uses the electrostatic Coulomb force.

When Faraday discovered what is now called Faraday’s law of induction, Queen Victoria asked him what possible use was electricity. “Madam,” he replied, “What good is a baby?” Today, currents induced by magnetic fields are essential to our technological society. The electric generator—found in everything from automobiles to bicycles to nuclear power plants—uses magnetism to generate electric current. Other devices that use magnetism to induce currents include pickup coils in electric guitars, transformers of every size, certain microphones, airport security gates, and damping mechanisms on sensitive chemical balances.

One experiment Faraday did to demonstrate magnetic induction was to move a bar magnet through a wire coil and measure the resulting electric current through the wire. A schematic of this experiment is shown in Figure 20.33. He found that current is induced only when the magnet moves with respect to the coil. When the magnet is motionless with respect to the coil, no current is induced in the coil, as in Figure 20.33. In addition, moving the magnet in the opposite direction (compare Figure 20.33 with Figure 20.33) or reversing the poles of the magnet (compare Figure 20.33 with Figure 20.33) results in a current in the opposite direction.

Attachments:
Similar questions