Math, asked by anulekshmi7037, 6 hours ago

c) If a -1/a =4, find the value i. a 2  + 1/a 2 ii. a 4 + 1/ a 4

Answers

Answered by tennetiraj86
0

Step-by-step explanation:

Given :-

a - (1/a) = 4

To find :-

Find the following :

1) a²+(1/a²)

2) a⁴+(1/a⁴)

Solution :-

Given that : a-(1/a) = 4 ------------(1)

On squaring both sides then

=> [a-(1/a)]² = 4²

=> a²-2(a)(1/a)+(1/a)² = 16

Since (x-y)² = x²-2xy+y²

Where , x = a and y = 1/a

=> a²-2+(1/a²) = 16

=> a²+(1/a²) = 16-2

=> a²+(1/a²) = 14 ---------------(2)

On squaring both sides again ,then

=> [a²+(1/a²)]²= 14²

=> (a²)²+2(a²)(1/a²)+(1/a²)² = 196

Since (x+y)² = x²+2xy+y²

Where , x = a² and y = 1/a²

=> a⁴+2+(1/a⁴) = 196

=> a⁴+(1/a⁴) = 196-2

=> a⁴+(1/a⁴) = 194----------------(3)

Answer:-

The value of a²+(1/a²) is 14

The value of a⁴+(1/a⁴) is 194

Used formulae:-

  • (x-y)² = x²-2xy+y²

  • (x+y)² = x²+2xy+y²

  • (a^m)^n = a^(mn)
Similar questions