Math, asked by balmukundbajoria13, 1 month ago

(c) If a
 {a}^{2}
a2+ b2 + c2 = 50 and ab + bc + ca = 47, find a +b+c.​

Answers

Answered by NewGeneEinstein
1

Step-by-step explanation:

Given:-

\\ \sf{:}\longrightarrow a^2+b^2+c^2=50

\\ \sf{:}\longrightarrow ab+bc+ca=47

To find:-

\\ \sf{:}\longrightarrow a+b+c

Solution:-

We know that

\boxed{\boxed{\sf (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca}}

\\ \sf{:}\longrightarrow (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

  • Substituting the values Given

\\ \sf{:}\longrightarrow (a+b+c)^2=50+2(47)

\\ \sf{:}\longrightarrow (a+b+c)^2=50+94

\\ \sf{:}\longrightarrow (a+b+c)^2=144

\\ \sf{:}\longrightarrow a+b+c=\sqrt[2]{144}

\\ \sf{:}\longrightarrow a+b+c=12

\\ \\ \therefore\sf{a+b+c=12}

Similar questions