Math, asked by aryanshailendra2323, 8 months ago

c) If x2+ y2 = 25 and x y = 12, find the value of
2 (x + y)2 + 3(x - y)2​

Answers

Answered by Anonymous
11

\huge{\underline{\underline{\red{\bf{Given:}}}}}

  • x²+y²=25.
  • xy = 12

\rule{200}4

\huge{\underline{\underline{\red{\bf{To\: Find:}}}}}

  • The value of 2(x + y)²+3(x - y)²

\rule{200}4

\huge{\underline{\underline{\red{\bf{Identities\:Used:}}}}}

  • (a + b)²= a²+b²+2ab.
  • (a - b)²= a²+b²-2ab .

\rule{200}4

\huge{\underline{\underline{\red{\bf{Answer:}}}}}

Given that x² + y² = 25

⇒x ² + y² = 25.

⇒x² + y² + 2xy = 25 + 2xy .

⇒ (x + y)² = 25 + 2× 12.

⇒(x + y)² = 25 + 24 .

⇒(x + y)²= 49. ..................(i)

\rule{200}2

Again ,

⇒x ² + y² = 25.

⇒x² + y² -2xy = 25 -2xy .

⇒ (x - y)² = 25 - 2× 12.

⇒(x - y)² = 25 -24 .

(x - y)² = 1. ......................(ii)

\rule{200}2

Now we have to find value of 2(x + y)²+3(x - y)².

On putting values from (i) and (ii) ,

⇒ 2(x + y)²+3(x - y)² = 2(49)+3(1)

⇒ 2(x + y)²+3(x - y)² = 2×49+ 3×1 .

⇒ 2(x + y)²+3(x - y)² = 98 + 3

⇒ 2(x + y)²+3(x - y)² = 111.

Hence the required value is 111.

Answered by GoogleForever
3

Answer:

{} \huge \mathfrak \pink{answer}

 {x}^{2}  +  {y }^{2}  = 25

so \: .by \:  using  \:    {a+b}^{2}   =  {a}^{2}  +  {b}^{2}  + 2ab

 {x  + y}^{2}  =  25+ 2 \times 12

 {x + y }^{2}  = 25 + 24 = 49

so \: x + y =  \sqrt{49}

so \: x + y = 7

hope it helps u

Similar questions