Math, asked by saranyakunjusss, 11 months ago

c. In any triangle ABC, prove that
a Sin (B - () + b Sin (C-A) +
c Sin (A - B)= 0 ​

Answers

Answered by sprao53413
0

Answer:

Please see the attachment

Attachments:
Answered by Anonymous
63

{\huge {\boxed{\bold{\boxed{\mathfrak{\color{red}{Answer}}}}}}}

In any triangle ABC,

a/sin A = b/sin B = c/sin C = k

a = k sin A, b = k sin B, c = k sin C

LHS =

= a sin (B – C) + b sin (C – A) + c sin (A – B)

= k sin A [sin B cos C – cos B sin C] + k sin B [sin C cos A – cos C sin A] + k sin C [sin A cos B – cos A sin B]

= k sin A sin B cos C – k sin A cos B sin C + k sin B sin C cos A – k sin B cos C sin A + k sin C sin A cos B – k sin C cos A sin B

= 0

= RHS

Hence proved that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0

Hope it's Helpful....:)

Similar questions