(C) In figure (iii) given below, D = 90, AB = 16 cm, BC = 12 cm and CA = 6cm. Find CD.
Answers
Answer:
3 1/6
Step-by-step explanation:
Given: D=90°,AB=16cm,BC=12cm and CA=6cm
ADC is a right triangle.
So, AC
2
=AD
2
+CD
2
[Pythagoras theorem]
6
2
=AD
2
+CD
2
…..(i)
ABD is also a right triangle.
So, AB
2
=AD
2
+BD
2
[Pythagoras theorem]
16
2
=AD
2
+(BC+CD)
2
16
2
=AD
2
+(12+CD)
2
256=AD
2
+144+24CD+CD
2
256−144=AD
2
+CD
2
+24CD
AD
2
+CD
2
=112−24CD
6
2
=112−24CD [from (i)]
36=112−24CD
24CD=112−36
24CD=76
CD=
24
76
=
6
19
∴CD=3
6
1
Hence the length of CD is 3
6
1 cm
Answer:
Given: D=90°,AB=16cm,BC=12cm and CA=6cm
ADC is a right triangle.
So, AC
2
=AD
2
+CD
2
[Pythagoras theorem]
6
2
=AD
2
+CD
2
…..(i)
ABD is also a right triangle.
So, AB
2
=AD
2
+BD
2
[Pythagoras theorem]
16
2
=AD
2
+(BC+CD)
2
16
2
=AD
2
+(12+CD)
2
256=AD
2
+144+24CD+CD
2
256−144=AD
2
+CD
2
+24CD
AD
2
+CD
2
=112−24CD
6
2
=112−24CD [from (i)]
36=112−24CD
24CD=112−36
24CD=76
CD=
24
7
=
6
19
∴CD=3
6
1
Hence the length of CD is 3
6
1
cm