c) In the figure alongside, BP and CP are the angular bisectors
of the exterior angles BCD and CBE of triangle ABC. Prove that
angle BPC = 90°- angleA/2
Answers
Solution :-
→ Ext.(∠BCD) = ∠A + ∠B { Exterior angle is equal to sum of opposite interior angles . }
So,
→ ∠BCP = (1/2)Ext.(∠BCD) { CP is angular bisector of Ext.(∠BCD) .}
→ ∠BCP = (1/2)[∠A + ∠B] -------- Eqn.(1)
similarly,
→ Ext.(∠CBE) = ∠A + ∠C { same above }
→ ∠CBP = (1/2)Ext.(∠CBE) { BP is angular bisector . }
→ ∠CBP = (1/2)[∠A + ∠C] --------- Eqn.(2)
Now, in ∆BPC we have,
→ ∠BCP + ∠CBP + ∠BPC = 180° { By angle sum property. }
putting values from Eqn.(1) and Eqn.(2),
→ (1/2)(∠A + ∠B) + (1/2)(∠A + ∠C) + ∠BPC = 180°
→ (1/2)(∠A + ∠A + ∠B + ∠C) + ∠BPC = 180°
putting ∠A + ∠B + ∠C = 180° ,
→ (1/2)(∠A + 180°) + ∠BPC = 180°
→ (1/2)∠A + 90° + ∠BPC = 180°
→ ∠BPC = 180° - 90° - (1/2)∠A
→ ∠BPC = [90° - (1/2)∠A] (proved.)
Learn more :-
In the figure ∠ MNP = 90°, ∠ MQN = 90°, , MQ = 12 , QP = 3 then find NQ .
https://brainly.in/question/47411321
show that AB2 = AD.AC
https://brainly.in/question/47273910
Answer:
Answer:
Step-by-step explanation:
From the figure attached,
CP is an angle bisector of angle BCD and BP is the angle bisector of angle CBE
Therefore, m∠DCP ≅ m∠BCP
and m∠PBE ≅ m∠PBC
m∠A + m∠CBA = m∠BCD
m∠A + (180° - m∠CBE) = m∠BCD
m∠A + 180° = m∠CBE + m∠BCD
m∠A + 180° = 2(m∠PCB) + 2(m∠PBC) [Since m∠CBE = 2m∠PCB and m∠BCD = 2(m∠PBC)
m∠A + 180° = 2(m∠PCB + m∠PBC)
m∠A + 180° = 2(180° - m∠BPC) [Since m∠PCB + m∠PBC + m∠BPC = 180°]
[\frac{1}{2}(m\angle A)]+90=180 - m\angle BPC[
2
1
(m∠A)]+90=180−m∠BPC
m∠BPC = 180 - [\frac{1}{2}(m\angle A)]-90[
2
1
(m∠A)]−90
m∠BPC = 90 - \frac{1}{2}m\angle A
2
1
m∠A