Math, asked by HA9650, 1 month ago

C^n+1 + d^n+1 / C^n +d^n i sthe arithmetic mean of C and d, then n is _____?

No Spamming Allowed...

Attachments:

Answers

Answered by senboni123456
3

Answer:

We know that, AM of any two numbers c and d given by,

 \frac{c + d}{2}  \\

Now,

 \frac{c + d}{2}  =  \frac{ {c}^{n + 1} +  {d}^{n + 1}  }{ {c}^{n} +  {d}^{n}  }  \\

  \implies(c + d) ({c}^{n} +  {d}^{n}   ) =  2({c}^{n + 1} +  {d}^{n + 1}  ) \\

  \implies({c}^{n + 1} + c {d}^{n}  +  d{c}^{n} +  {d}^{n + 1}    ) =  2({c}^{n + 1} +  {d}^{n + 1}  ) \\

  \implies(  c {d}^{n}  +  d{c}^{n}   ) =  ({c}^{n + 1} +  {d}^{n + 1}  ) \\

  \implies {c}^{n + 1} - d{c}^{n}+  {d}^{n + 1}  - c {d}^{n}= 0 \\

  \implies {c}^{n } (c- d)+  {d}^{n}(d  - c)= 0 \\

  \implies {c}^{n } (c- d) -   {d}^{n}( c - d)= 0 \\

  \implies ({c}^{n }  -   {d}^{n})( c - d)= 0 \\

  \implies {c}^{n }  -   {d}^{n}= 0 \\

  \implies { (\frac{c}{d})}^{n } = 1 \\

 \implies \: n = 0

Similar questions