Math, asked by jonjonapostol230, 2 days ago

C(n,2)=21 with solutions

Answers

Answered by harshitrao9123
0

Answer:

n is 7 see pic for explation please mark as brianlist I work hard for you

Attachments:
Answered by user0888
18

The combination is defined by,

\rm{C(n,k)=\dfrac{n!}{k!(n-k)!}}

Hence,

\rm{C(n,2)=\dfrac{n!}{2!(n-2)!}}

\rm{C(n,2)=\dfrac{n!}{(n-2)!}}\cdot\dfrac{1}{2!}

\rm{C(n,2)=\dfrac{n(n-1)}{2!}

Given that,

\rm{C(n,2)=21}

\rm{\dfrac{n(n-1)}{2}=21}

\rm{n(n-1)-42=0}

\rm{n^{2}-n-42=0}

\rm{(n-7)(n+6)=0}

\rm{n=7\ or\ n=-6}

But, (-6)! is not defined.

\rm{\therefore n=7}

Similar questions