Math, asked by rajvardhan1178, 5 months ago

(c) PQ is a straight line of 13 units If P has the co-ordinates (5, - 3) and Q has the co-ordinates
(-7. v): find the values of y'.

Answers

Answered by aryan073
3

Given :

•Distance between PQ =13 units

•P=(5,-3)

Q=(-7,v)

To Find :

• The value of y=?

Formula :

Distance between two points is

\\ \red\bigstar\boxed{\sf{AB=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}}

Solution :

• Distance between PQ is 13 units

• P=(5,-3)

Q=(-7,v)

By using Distance Formula

\\ \implies\sf{PQ=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}

Substituting the given values :

\\ \implies\sf{PQ=\sqrt{(v-(-3))^{2}+(-7-5)^{2}}}

\\ \implies\sf{13= \sqrt{(v+3)^{2}+(-12)^{2}}}

\\ \implies\sf{169=(v+3)^{2}+144}

\\ \implies\sf{169=v^{2}+9+6v+144}

\\ \implies\sf{169-144-v^{2}-9-6v=0}

\\ \implies\sf{169-153-v^{2}-6v=0}

\\ \implies\sf{16-v^{2}-6v=0}

\\ \implies\sf{-v^{2}-6v+16=0}

\\ \implies\sf{v^{2}+6v-16=0}

\\ \implies\sf{v^{2}+8v-2v-16=0}

\\ \implies\sf{v(v+8)-2(v+8)=0}

\\ \implies\sf{(v+8)(v-2)=0}

 \\  \implies \boxed { \sf{v =  - 8}} \sf  \: and \:  \boxed{ \sf{v = 2}}

The value of v is 2

Similar questions