Math, asked by Vanshika1818, 1 day ago

C
Q.10 Using the Principle of Mathematical induction Prove that for all neN
1 + 2 + 3 +
+n=1/2n(n+1)​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:P(n): 1 + 2 + 3 +  -  -  -  + n = \dfrac{n(n + 1)}{2}

Step :- 1 For n = 1

\rm :\longmapsto\:P(n): 1  = \dfrac{1(1 + 1)}{2} = \dfrac{2}{2} = 1

\bf\implies \:P(n) \: is \: true \: for \: n = 1

Step :- 2 Assume that P(n) is true for n = k, where k is some natural number.

\rm :\longmapsto\:P(k): 1 + 2 + 3 +  -  -  -  + k = \dfrac{k(k + 1)}{2}

Step :- 3 We have to prove that P(n) is true for n = k + 1

So,

\rm :\longmapsto\:P(k + 1): 1 + 2 + 3 +  -  -  -  + (k + 1) = \dfrac{(k + 1)(k + 2)}{2}

Consider,

\rm :\longmapsto\:1 + 2 + 3 +  -  -  -  -  -  + (k + 1)

\rm \:  =  \:\dfrac{k(k + 1)}{2}  + (k + 1)

\rm \:  =  \:(k + 1) \bigg(\dfrac{k}{2}  + 1 \bigg)

\rm \:  =  \:(k + 1) \bigg(\dfrac{k + 2}{2} \bigg)

\bf\implies \:P(n) \: is \: true \: for \: n = k + 1

Hence, By the Process of Principal of Mathematical Induction,

\rm :\longmapsto\:1 + 2 + 3 +  -  -  -  + n = \dfrac{n(n + 1)}{2}

Hence, Proved

Similar questions