C.S.A of cone is 308 sq cm and its slant height is 14 cm. (1) Radius (2) Total surface area of
cone
Answers
Given that :
- CSA of cone = 308cm²
- Slant height (l) = 14cm
We have to find :
- The radius
- TSA of cone
- Finding radius :
- Finding TSA of cone by taking r=7cm :
- CSA of cube : 4a²
- TSA of cube : 6a²
- Volume of cube : a³
- TSA of hemisphere : 2πr²
- CSA of hemisphere : 3πr²
- Volume of cuboid : lbh
- CSA of cuboid : 2h(l+b)
Step-by-step explanation:
⇝Given:
⇝Given:
Given that :
CSA of cone = 308cm²
Slant height (l) = 14cm
\begin{gathered} \\ \end{gathered}
\red{\large {\pmb{\rm{\leadsto \: To \: find:}}}}
⇝Tofind:
⇝Tofind:
We have to find :
The radius
TSA of cone
\begin{gathered} \\ \end{gathered}
\red{\large{\pmb{\rm{\leadsto \: Solution:}}}}
⇝Solution:
⇝Solution:
Finding radius :
\dag \: \: {\red{\pmb{\sf{CSA \: of \: cone=\pi rl}}}} \: \: \dag†
CSAofcone=πrl
CSAofcone=πrl†
:\implies \sf \pi rl=308cm^2:⟹πrl=308cm
2
:\implies \sf \cfrac{22}{7} \: r \: (14cm) =308cm^2:⟹
7
22
r(14cm)=308cm
2
:\implies \sf \cfrac{22}{\cancel7} \: r \: (\cancel{14cm})=308cm^2:⟹
7
22
r(
14cm
)=308cm
2
: \implies\sf22 \times 2 \times r = 308 {cm}^{2}:⟹22×2×r=308cm
2
:\implies \sf 44r= 308cm^2:⟹44r=308cm
2
:\implies \sf r= \cfrac{308}{44}:⟹r=
44
308
{\green{\pmb{\sf {\therefore \: r=7cm}}}}
∴r=7cm
∴r=7cm
Finding TSA of cone by taking r=7cm :
\dag \: \: {\red{\pmb{\sf{TSA \: of \: cone=\pi r(r + l)}}}} \: \: \dag†
TSAofcone=πr(r+l)
TSAofcone=πr(r+l)†
:\implies \sf \cfrac{22}{7} \: (7cm)(7cm+14cm):⟹
7
22
(7cm)(7cm+14cm)
:\implies \sf \cfrac{22}{\cancel7} (\cancel{7cm})(28cm):⟹
7
22
(
7cm
)(28cm)
:\implies \sf 22 \times 28cm:⟹22×28cm
{\green{\pmb{\sf{\therefore \: TSA \: of \: cone=616cm^2}}}}
∴TSAofcone=616cm
2
∴TSAofcone=616cm
2
\begin{gathered} \\ \end{gathered}
\red{\large {\pmb{\rm{\leadsto~Know~more:}}}}
⇝ Know more:
⇝ Know more:
CSA of cube : 4a²
TSA of cube : 6a²
Volume of cube : a³
TSA of hemisphere : 2πr²
CSA of hemisphere : 3πr²
Volume of cuboid : lbh
CSA of cuboid : 2h(l+b)
\begin{gathered}\\\end{gathered}