Math, asked by maliha40, 3 months ago

C = sec theta + tan theta

Question : If C = root 3,what is the value of theta?​

Answers

Answered by Anonymous
830

\small\pink{\mathcal{\underline{\:\:Given\:that\:\:}}}

  • C=secϴ+tanϴ

Here, C = √3

\small\pink{\mathcal{\underline{\:\:Accroding\:to\:question,\:\:}}}

  • secϴ + tanϴ = √3

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;\frac{1}{cosϴ}+\frac{sinϴ}{cosϴ}\;=\;\bf{3}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;\frac{1+sinϴ}{cosϴ}\;=\;\bf{3}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;1+sinϴ\;=\;\bf{\;√3\:cosϴ\;}}}\end{gathered}

\small\pink{\mathcal{\underline{\:\:By\:squaring\:both\:side,\:}}}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;(1+sinϴ)^2\;=\;\bf{(\;√3\:cosϴ)^2\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;1+2sinϴ+sin^2ϴ\;=\;\bf{\;3cos^2ϴ\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;1+2sinϴ+sin^2ϴ\;=\;\bf{\;3(1-sin^2ϴ)\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;sin^2ϴ+2sinϴ+1\;=\;\bf{\;3-3sin^2ϴ\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;sin^2ϴ+3sin^2ϴ+2sinϴ+1-3\;=\;\bf{\;0\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;4sin^2ϴ+2sinϴ-2\;=\;\bf{\;0\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;2sin^2ϴ+2sinϴ-1\;=\;\bf{\;0\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;2sin^2ϴ+2sinϴ-sinϴ-1\;=\;\bf{\;0\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;2sinϴ(sinϴ+1)-1(sinϴ+1)\;=\;\bf{\;0\;}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;(2sinϴ-1)(sinϴ+1)\;=\;\bf{\;0\;}}}\end{gathered}

______________________________

Either, 2sinϴ - 1 = 0

⇒ 2sinϴ = 0

⇒ sinϴ = \frac{1}{2}

⇒ ϴ = 30°

Or, sinϴ+1 = 0

⇒ sinϴ = -1

This is not possibe as ϴ is an acute angle.

\large\pink{\boxed{\underline{\mathscr{\blue{So,the\:value\:of\:ϴ=30°}}}}}

Answered by OoINTROVERToO
37

GIVEN THAT

  • C = secϴ + tanϴ
  • C = √3

SOLUTION

According To Question

  • secϴ + tanϴ = √3
  • 1/{cosϴ} + {sinϴ}/{cosϴ} = 3
  • {1+sinϴ}/{cosϴ} = 3
  • 1+sinϴ=√3cosϴ

Squaring Both Side

  • (1+sinϴ)² = (√3cosϴ)²
  • 1+2sinϴ+sin²ϴ=3cos²ϴ
  • 1+2sinϴ+sin²ϴ=3(1−sin²ϴ)
  • sin²ϴ+2sinϴ+1=3−3sin²ϴ
  • sin²ϴ+3sin²ϴ+2sinϴ+1−3=0
  • 4sin²ϴ+2sinϴ−2=0
  • 2sin²ϴ+2sinϴ−1=0
  • 2sin²ϴ+2sinϴ−sinϴ−1=0
  • 2sinϴ(sinϴ+1)−1(sinϴ+1)=0
  • (2sinϴ−1)(sinϴ+1)=0

  \boxed{\begin{array}{c|c}2sinϴ - 1 = 0& sinϴ+1 = 0 \:  \\ sinϴ = \frac{1}{2} \: &sinϴ = -1  \end{array}}\\  \bf \: since \:  ϴ  \: is  \: an  \: acute \:  angle.\\  \cr \: Hence, the \: value \: of \: \boxed{ \bf ϴ=30°}

Similar questions