Math, asked by ashi66451, 9 months ago

(c) The perimeter of an isosceles right-angled triangle is 6(V2+1) cm. Find its area.​

Answers

Answered by nikhilpratap9568
1

Answer:

Let the length of the equal sides of the isoceles right triangle be x

\textsf{Then, its hypotenuse is}Then, its hypotenuse is

\mathsf{Hypotenuse^2=x^2+x^2=2x^2}Hypotenuse

2

=x

2

+x

2

=2x

2

\implies\mathsf{Hypotenuse=\sqrt{2}x}⟹Hypotenuse=

2

x

\textsf{\underline{Given:}}

Given:

\textsf{Perimeter of the triangle =$6(\sqrt{2}+1)$ cm}Perimeter of the triangle =6(

2

+1) cm

\implies\mathsf{\sqrt{2}x+2x=6(\sqrt{2}+1)}⟹

2

x+2x=6(

2

+1)

\implies\mathsf{\sqrt{2}x(1+\sqrt{2})=6(\sqrt{2}+1)}⟹

2

x(1+

2

)=6(

2

+1)

\implies\mathsf{\sqrt{2}x=6}⟹

2

x=6

\implies\mathsf{x=3\sqrt{2}}⟹x=3

2

\textsf{Then, the are of the triangle }Then, the are of the triangle

\textsf{$=\frac{1}{2}$*base*height}=

2

1

*base*height

\mathsf{=\frac{1}{2}*3\sqrt{2}*3\sqrt{2}}=

2

1

∗3

2

∗3

2

\textsf{=9 square cm}=9 square cm

Answered by Rites122
2

HOPE IT HELPS YOU .

PLEASE MARK ME BRAINLIST

Attachments:
Similar questions