Math, asked by roysanjukta644, 7 months ago

c) The perimeter of triangle 8+13a + 7a² and Two
of its sides are 2a²+ 3a+2 and 3a²-4a-1 find the
third side of triangle

Answers

Answered by subbueranki
5

Answer:

Step-by-step explanation:

Let X , Y, Z are three sides of triangle & P be the perimeter of triangle

where X=2a^2+3a+2

Y=3a^2-4a-1 Z=?

P=7a^2+13a+8

Now

P= X+Y+Z

7a^2+13a+8=2a^2+3a+2+3a^2-4a-1 +Z

7a^2+13a+8=5a^2-a+1+1

Z=7a^2-5a^2+13a+a+8-1

Z=2a^2+14a+7

Hence , the third side of triangle =2a^2+14a+7.

Hope it helps

                                     

                                  follow me plz

Answered by Uriyella
21
  • The third side of the triangle = 7 + 14a + 2a².

Given :–

  • Perimeter of the triangle = 8 + 13a + 7a².
  • The first side of the triangle = 2a² + 3a + 2.
  • The second side of the triangle = 3a² – 4a – 1.

To Find :–

  • The third side of the triangle.

Solution :–

Let,

The third side of the triangle be x.

Given that,

Perimeter of the triangle = 8 + 13a + 7a²

That means,

First side + Second side + Third side = 8 + 13a + 7a²

We have,

  • First side = 2a² + 3a + 2.
  • Second side = 3a² – 4a –1.

Now, substitute this value.

 \rightarrow ( {2a}^{2}  + 3a + 2) + ( {3a}^{2}  - 4a - 1) + x = 8 + 13a +  {7a}^{2}

\rightarrow  {2a}^{2}  + 3a + 2 +  {3a}^{2}  - 4 - 1 + x = 8 + 13a +  {7a}^{2}

\rightarrow  {2a}^{2}  +  {3a}^{2}  + 3a - 4a + 2 - 1 + x = 8 + 13a +  {7a}^{2}

\rightarrow  {5a}^{2}  - a + 1 + x = 8 + 13a +  {7a}^{2}

\rightarrow x = (8 + 13a +  {7a}^{2} ) - ( {5a}^{2}  - a + 1)

\rightarrow x = 8 + 13a +  {7a}^{2}  -  {5a}^{2}   +  a  -  1

\rightarrow x = 8 - 1 + 13a + a +  {7a}^{2}  -  {5a}^{2}

\rightarrow x = 7 + 14a +  {2a}^{2}

Hence,

The third side of the triangle is 7 + 14a + 2a².

Verification :–

First side + Second side + Third side = 8 + 13a + 7a²

Now we have,

  • First side = 2a² + 3a + 2.
  • Second side = 3a² – 4a –1.
  • Third side = 7 + 14a + 2a².

Now, substitute all the values.

\rightarrow ( {2a}^{2}  + 3a + 2) + ( {3a}^{2}  - 4a - 1) + (7 + 14a +  {2a}^{2} ) = 8 + 13a +  {7a}^{2}

\rightarrow  {2a}^{2}  + 3a + 2 +  {3a}^{2}  - 4a - 1 + 7 + 14a +  {2a}^{2}  = 8 + 13a  +  {7a}^{2}

\rightarrow 2 - 1 + 7 + 3a - 4a + 14a +  {2a}^{2}  +  {3a}^{2}  +  {2a}^{2}  = 8 + 13a +  {7a}^{2}

\rightarrow 1 + 7 - a + 14a +  {5a}^{2}  +  {2a}^{2}  = 8 + 13a +  {7a}^{2}

\rightarrow 8 + 13a +  {7a}^{2}  = 8 + 13a +  {7a}^{2}

Hence Verified !!

Similar questions