Math, asked by MathsKiMaya, 4 days ago

CA foundation question. Solve with required steps.

Thanks in advance.​

Attachments:

Answers

Answered by Anonymous
14

Topic - Infinite Tatration

Explanation:

We need to solve the given expression.

 \displaystyle \rm 4 +  \dfrac{1}{4 +  \dfrac{1}{4 +  \dfrac{1}{4  + ... \infty} } }

Let's say the given expression be some variable say (y)

{ \displaystyle \implies \rm y =  4 +  \dfrac{1}{4 +  \dfrac{1}{4 +  \dfrac{1}{4  + ... \infty} } } }

Can be re-written as,

{ \displaystyle \implies \rm y =  4 +  \dfrac{1}{y}}

{ \displaystyle \implies \rm y  =  \dfrac{4y + 1}{y}}

{ \displaystyle \implies \rm  {y}^{2}   = 4y + 1}

{ \displaystyle \implies \rm  {y}^{2}   -  4y  -  1 = 0 \:  \:  \: ... [Eq. 1]}

Now, we will use quadratic formula to solve for irrational roots of this equation.

According to quadratic formula:

For any equation of the form ax^2 + bx+c = 0, it's roots are given by the below formula.

 \boxed{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

By using this formula, the roots of [Eq. 1] are given by:

{ \displaystyle \cdot\cdot\cdot\longrightarrow \rm  y =  \frac{  - ( - 4)  \pm \sqrt{ {( - 4)}^{2} -4(1)( - 1) } }{2} }

{ \displaystyle\cdot\cdot\cdot\longrightarrow \rm  y =  \frac{ 4  \pm \sqrt{16 + 4} }{2} }

{ \displaystyle \cdot\cdot\cdot\longrightarrow\rm  y =  \frac{ 4  \pm \sqrt{20} }{2} }

{ \displaystyle\cdot\cdot\cdot\longrightarrow \rm  y =  \frac{ 4  \pm \sqrt{2 \cdot 2 \cdot 5} }{2} }

{ \displaystyle\cdot\cdot\cdot\longrightarrow  \rm  y =  \frac{ 4  \pm 2\sqrt{5} }{2} }

{ \displaystyle  \cdot\cdot\cdot\longrightarrow\rm  y =  \frac{2( 2  \pm \sqrt{5}) }{2} }

{ \displaystyle\cdot\cdot\cdot\longrightarrow \rm  y = 2  \pm \sqrt{5}}

Therefore, option [C] is correct answer.

Learn more:

You may also visit a similar type of question from following lìnk.

https://brainly.in/question/49253918

Answered by diliptalpada66
4

Step-by-step explanation:

We know the formula,

 \\  \tt\[ \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \]

Here the equation,

 \\  \\    \[ \begin{array}{l} \tt 2 x^{2}-4 x-3=0 \\ \\  \\  \tt a=2, b=-4, c=-3 \end{array} \]

Substituting the values, we get

 \\  \\ \[ \begin{array}{l} \tt =\dfrac{4 \pm \sqrt{(-4)^{2}-4 \times 2 \times-3}}{2 \times 2} \\  \\  \\  \tt=\dfrac{4 \pm \sqrt{16+24}}{4} \\ \\  \\  \tt =\cfrac{4 \pm \sqrt{40}}{4} \end{array} \]

Take 2 as common, we get

 \\  \\  \tt\[ =\frac{2 \pm \sqrt{10}}{2} \]

\\ \\ \tt=\

 \\  \\  \color{maroon} \text{\( \therefore \) solution of the equation \(  \tt2 x^{2}-4 x-3 \) is \( \tt \dfrac{2 \pm \sqrt{10}}{2} \).}

Similar questions