Hindi, asked by rajeshdigitalphoto22, 4 months ago

चांदनी कौन लूटाता है????????​

Answers

Answered by Lauv12
0

Answer:

हिमालय में स्थित कंचनजंगा दुनिया की तीसरी सबसे ऊंची चोटी है. इसकी ढलानों पर समुद्र तल से क़रीब 2200 मीटर की ऊंचाई पर स्थित हैं कुछ ख़ास पहाड़ियां. दार्जिलिंग की ये पहाड़ियां देखें तो इनका प्राकृतिक सौंदर्य कुछ पलों के लिए आपकी सांसें रोक देगा. इन पहाड़ियों में जंगली हाथी और बाघ मस्ती में घूमते हैं. पहाड़ियों की ढलानों पर बौद्ध मठ हैं.

Answered by XBarryX
0

Explanation:

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Given :-

\begin{gathered} A = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}A=[cosθ−sinθsinθcosθ]

And

B=A+A^4B=A+A4

___________________________

▪To Calculate :-

det(B)

___________________________

▪Solution :-

\begin{gathered} A = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}A=[cosθ−sinθsinθcosθ]

So,

\begin{gathered} \sf A {}^{2} = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ = \small \begin{bmatrix} \sf cos {}^{2} \theta - {sin}^{2} \theta& \sf sin \theta cos \theta + sin \theta cos \theta \\ \sf - sin \theta cos \theta - sin \theta cos \theta& \sf - {sin}^{2} \theta + cos {}^{2} \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos 2\theta& \sf sin 2\theta \\ \sf - sin2 \theta& \sf cos2 \theta \end{bmatrix} \end{gathered}A2=[cosθ−sinθsinθcosθ]=[cosθ−sinθsinθcosθ][cosθ−sinθsinθcosθ][cosθ−sinθsinθcosθ]=[cos2θ−sin2θ−sinθcosθ−sinθcosθsinθcosθ+sinθcosθ−sin2θ+cos2θ]=[cos2θ−sin2θsin2θcos2θ]

Similarly,

\begin{gathered}A {}^{4} = \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\ \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix}\end{gathered}A4=[cos4θ−sin4θsin4θcos4θ]

As,

Given Matrix

B = A + A {}^{4}B=A+A4

So,

\begin{gathered} \sf B= \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}+ \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\ \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos \theta + cos 4\theta& \sf sin \theta + sin 4\theta \\ \sf -( sin \theta + sin 4\theta)& \sf cos \theta + cos4 \theta \end{bmatrix} \end{gathered}B=[cosθ−sinθsinθcosθ]+[cos4θ−sin4θsin4θcos4θ]=[cosθ+cos4θ−(sinθ+sin4θ)sinθ+sin4θcosθ+cos4θ]

\begin{gathered} \bf \small\therefore det(B) = {(cos \theta + cos4 \theta)}^{2} + {(sin \theta + sin4 \theta)}^{2} \\ \\ = \sf {cos}^{2} \theta + {cos}^{2} 4\theta + 2 cos\theta cos4 \theta \\ + {sin}^{2} \theta \sf+ {sin}^{2} 4\theta + 2 sin\theta sin4 \theta \\ \\ = \sf 2 + 2cos(3 \theta)\end{gathered}∴det(B)=(cosθ+cos4θ)2+(sinθ+sin4θ)2=cos2θ+cos24θ+2cosθcos4θ+sin2θ+sin24θ+2sinθsin4θ=2+2cos(3θ)

\begin{gathered} \sf So, at \: \theta = \frac{\pi}{5} \\ \\ \sf det(B) = 2 + 2cos \frac{3\pi}{5} \\ \\ = \sf4 {cos}^{2} ( \frac{3\pi}{10} ) \\ \\ = \sf4(\frac{ \sqrt{10 - 2 \sqrt{5} } }{4} \: {)}^{2} \\ \\\large \colorbox{lime}{ \underline{\boxed{ \color{magenta}\bf det(B)= \frac{1}{4} (10 - 2 \sqrt{5} \: )}}}\end{gathered}So,atθ=5πdet(B)=2+2cos53π=4cos2(103π)=4(410−25)2 det(B)=4

Similar questions