(cal
The number of positive integral Solutions of x2+95 (x+3)
28 x +25 iu
The number of Solutions of the system of equations given
e below is lai+l4l=1 x ² + y ² - a - caci,
Given lx?m2+5.50 does not have two distince real roots
the minimum value of 5lt milli
Answers
Step-by-step explanation:
420 possible solution
(x1 +x2 +x3)(y1 + y2) = 77
7 * 11 = 77
or
11 * 7 = 77
case 1
x1 + x2 + x3 = 7 and y1 + y2 = 11
7 =
1+1+5 , 1+2+4 , 1+3+3 , 1+4+2 , 1+5+1 ,
2+1+4 , 2+2+3 , 2+3+2 , 2+4+2 ,
3+1+3, 3+2+2, 3+3+1 ,
4+1+2 , 4+2+1 ,
5+1+1
= (15 possibles)
Similarly
11 = 1+10 , 2+9 , 3+8 , 4+7 , 5+6 , 6+5 , 7+4 , 8+3 , 9+2 , 10+1 (10 possible)
total = 15 * 10 = 150 possible solutions
Now case 2
x1+x2+x3 = 11 & y1+y2=7
11=1+1+9 , 1+2+8 , 1+3+7 , 1+4+6 , 1+5+5 , 1+6+4 , 1+7+3 , 1+8+2, 1+9+1 , 2+1+8 , 2+2+7, 2+3+6,2+4+5, 2+5+4, 2+6+3, 2+7+2,2+8+1,
3+1+7,3+2+6,3+3+5,3+4+4,3+5+3,3+6+2,3+7+1
+ so on till
8+1+2 , 8 +2+1 ,
9+1+1
=(9 +8+7+6+5+4+3+2+1) = 45 Possible solutions
y1 + y2 = 7
1+6 , 2+5 , 3+4 , 4+3 , 5+2 , 6+1 = 6 possible solutions
45 * 6 = 270 possible solutions
case 1 + case2
150 + 270 = 420 possible solutions
Read more on Brainly.in - https://brainly.in/question/8159987#readmore