Math, asked by dipu3391, 1 year ago

calculate (1+tanA÷1+cosA)^2​

Answers

Answered by BrainlyConqueror0901
101

Answer:

\huge{\boxed{\boxed{\sf{ \frac{1 +  \sin(a)  \times  \cos(a) }{2 \cos^{3} (a) -  \sin ^{2} (a) \times  \cos(a)   }  </p><p>}}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

(  \frac{1 +  \tan(a) }{1 +  \cos(a) } )^{2}  \\  = ) \frac{ {1}^{2} +  { \tan }^{2} a + 2 \tan(a)  }{ {1}^{2} +  { \cos  }^{2} a + 2 \cos(a)  }   \\  = ) \frac{ \sec ^{2} a + 2 \tan(a)  }{1 + 1 -  \sin^{2} (a) + 2 \cos(a)  }  \\  = ) \frac{ \sec ^{2}  a+ 2 \tan(a)   }{2 \cos(a)  -  \sin ^{2} (a) }  \\  = ) \frac{ \frac{1}{ \cos^{2} (a)   }+  \frac{ \sin(a) }{ \cos(a) }}{2 \cos(a)  -  \sin ^{2} (a) }  \\  = ) \frac{ \frac{1 +  \sin(a) \times  \cos(a)  }{ \cos^{2} (a) } }{2 \cos(a) -  \sin^{2} (a)  } \\  = )  \frac{1 +  \sin(a)  \times  \cos(a) }{2 \cos^{3} (a) -  \sin ^{2} (a) \times  \cos(a)   }  \\

\huge{\boxed{\boxed{\sf{ \frac{1 +  \sin(a)  \times  \cos(a) }{2 \cos^{3} (a) -  \sin ^{2} (a) \times  \cos(a)   }  </p><p>}}}}

Similar questions