Math, asked by mk5248282, 8 months ago

Calculate(a)wave number and(b)frequency of radiation having wave length 2000A°​

Answers

Answered by BrainlyTornado
3

ANSWER:

  • (a) Wave number = 3.14 × 10⁷ m⁻¹.

  • (b) Frequency = 1.5 × 10¹⁵ s⁻¹.

GIVEN:

  • Wave length 2000 A°.

TO FIND:

  • (a) Wave number.

  • (b) Frequency.

EXPLANATION:

\boxed{ \large{ \bold{ \gray{Wave \ number(k) = \dfrac{2\pi}{\lambda}}}}}

 \sf \lambda = 2000 \ A^{\circ}

\boxed{ \large{ \bold{ \gray{1 \ A^{\circ}  =  {10}^{ - 10}  \ m}}}}

 \sf \lambda = 2000 \times  {10}^{ - 10}  \ m

 \sf \lambda = 2 \times  {10}^{ - 7}  \ m

\sf k =\dfrac{2\pi}{2\times10^{-7}}

\sf k =\dfrac{3.14}{10^{-7}}

\sf k =3.14 \times 10^{7} \  {m}^{ - 1}

\boxed{ \large{ \bold{ \gray{Frequency( \nu) = \dfrac{c}{\lambda}}}}}

\sf \nu = \dfrac{3 \times  {10}^{8} }{2\times 10^{-7}}

\sf \nu = \dfrac{1.5 \times  {10}^{8} }{ 10^{-7}}

\sf \nu = 1.5  \times 10^{15}

\sf \nu = 1.5  \times 10^{15} \ {s}^{ - 1}

\ {\sf \therefore Wave \ number =3.14 \times 10^{7} \  {m}^{ - 1}}

\ \sf  \therefore Frequency = 1.5  \times 10^{15} \ {s}^{ - 1}

EXTRA POINTS:

  • Some times, wave number is also defined as reciprocal of wavelength.

\boxed{ \large{ \bold{ \gray{Wave \ number(k) = \dfrac{1}{\lambda}}}}}

 \sf \lambda = 2000 \ A^{\circ}

\boxed{ \large{ \bold{ \gray{1 \ A^{\circ}  =  {10}^{ - 10}  \ m}}}}

 \sf \lambda = 2000 \times  {10}^{ - 10}  \ m

 \sf \lambda = 2 \times  {10}^{ - 7}  \ m

\sf k =\dfrac{1}{2\times10^{-7}}

\sf k =\dfrac{0.5}{10^{-7}}

\sf k =0.5 \times 10^{7} \  {m}^{ - 1}

\sf k =5 \times 10^{6} \  {m}^{ - 1}

Hence wavenumber can be 5 × 10⁶ m⁻¹, if we cosider the above formula.


Cynefin: Perfect Explanation (✯ᴗ✯)
Similar questions